Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ΔABD vuông tại A => ˆABD+ˆADB=90
Mà ˆADB = ˆCDE đối đỉnh
=>ˆABD^+ˆCDE = 90 (1)
+ΔCBE vuông tại C =>ˆCBE+ˆCEB=90
Mà ˆCBE = ˆABD ( BD là phân giác)
=> ˆCEB+ˆABD = 90 (2)
(1)(2) => ˆCEB =ˆCDE hay ˆCED=ˆCDE ( dpcm)
Hiệu của hai số là 4. Nếu tăng một số gấp ba lần, giữ nguyên số kia thì hiệu của chúng
bằng 60. Tìm hai số đó
: Xét ΔCAB có
M là trung điểm của AB
ME//AB
Do đó: E là trung điểm của AC
Xét tứ giác AMCN có
E là trung điểm của đường chéo AC
E là trung điểm của đường chéo MN
Do đó: AMCN là hình bình hành
mà MN⊥AC
nên AMCN là hình thoi
+) Ta có BD là tia phân giác của góc ABC nên: ∠(ABD) = ∠(DBC) (1)
+ Lại có: ∠(ADB)= ∠(CDE) ( hai góc đối đỉnh) (2)
+) Tam giác ABD vuông tại A nên:
∠ (ABD) + ∠(ADB) = 90° (tính chất tam giác vuông) (3)
Từ (1); (2) và (3) suy ra: ∠ (DBC) + ∠(CDE) = 90° (4)
+) Tam giác BCE vuông tại C nên:
∠ (DBC) + ∠(BEC) = 90° (tính chất tam giác vuông) (5)
Từ (4) và (5) suy ra : ∠ (CDE) = ∠(BEC)
Vậy tam giác CDE có hai góc bằng nhau.
+) Ta có BD là tia phân giác của góc ABC nên: ∠(ABD) = ∠(DBC) (1)
+ Lại có: ∠(ADB)= ∠(CDE) ( hai góc đối đỉnh) (2)
+) Tam giác ABD vuông tại A nên:
∠ (ABD) + ∠(ADB) = 90° (tính chất tam giác vuông) (3)
Từ (1); (2) và (3) suy ra: ∠ (DBC) + ∠(CDE) = 90° (4)
+) Tam giác BCE vuông tại C nên:
∠ (DBC) + ∠(BEC) = 90° (tính chất tam giác vuông) (5)
Từ (4) và (5) suy ra : ∠ (CDE) = ∠(BEC)
Vậy tam giác CDE có hai góc bằng nhau.
Tam giác vuông CBE có : \(\widehat{E}+\widehat{B_1}=90^o\) \((1)\)
Tam giác vuông ACD có : \(\widehat{D_1}+\widehat{B_2}=90^o\) \((2)\)
Mà \(\widehat{B_1}=\widehat{B_2}\)\((\)tính chất phân giác \()\)và \(\widehat{D_1}=\widehat{D_2}\)\((\)đối đỉnh\()\)nên suy ra \(\widehat{E}=\widehat{D_2}\)
=> ...
Chúc bạn học tốt