cho tam giác ABC vuông ở A , đường cao AH. M và N là chân đườ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2020

B C A x y M N 6 8

Vì cậu chỉ nhờ làm phần d nên mk chỉ làm phần d thôi nhé!

Với lại đề của phần d cậu viết nhầm phải sửa thành: \(CM:S_{\Delta AMB}=\frac{9}{16}S_{\Delta ANC}\)nữa ạ!

Bài làm:
Ta có: \(\widehat{MAB}+\widehat{BAC}+\widehat{NAC}=180^0\)

\(\Rightarrow\widehat{MAB}+\widehat{NAC}=90^0\left(1\right)\)

Xét trong tam giác vuông ANC có \(\widehat{NAC}+\widehat{NCA}=90^0\left(2\right)\)

Từ (1),(2)

=> \(\widehat{NCA}=\widehat{MAB\left(3\right)}\)

Ta có: \(\Delta MBA~\Delta NAC\left(g.g\right)\)

vì \(\hept{\begin{cases}\widehat{NCA}=\widehat{MAB}\left(theo\left(3\right)\right)\\\widehat{BMA}=\widehat{ANC}=90^0\end{cases}}\)

\(\Rightarrow\frac{S_{\Delta AMB}}{S_{\Delta ANC}}=\left(\frac{AB}{AC}\right)^2=\left(\frac{6}{8}\right)^2=\frac{9}{16}\)

\(\Rightarrow S_{\Delta AMB}=\frac{9}{16}S_{\Delta ANC}\)

=> đpcm

Chúc bạn học tốt!

13 tháng 12 2020

A B C H K I F E

a) Tứ giác AHKI là hình vuông \(\Rightarrow S_{AHKI}=AH^2=2^2=4\left(cm^2\right)\)

b) Xét \(\Delta ABH\)và \(\Delta AFI\)có:

 +) \(\widehat{AIF}=\widehat{AHB}=90^o\)

+) \(AH=AI\)( vì \(AHKI\)là hình vuông )

+) \(\widehat{BAH}=\widehat{IAF}\)( cùng phụ với \(\widehat{HAC}\))

\(\Rightarrow\Delta ABH=\Delta AFI\left(g.c.g\right)\)\(\Rightarrow AB=AF\)

Xét tứ giác \(ABEF\)có: \(BE//AF\)\(AB//EF\)\(\widehat{BAC}=90^o\)\(AB=AF\)

\(\Rightarrow ABEF\)là hình vuông ( đpcm )

25 tháng 5 2021

A B C 6 8 H E D F K

a, Xét tam giác ABC và tam giác HBA ta có : 

^BAC = ^AHB = 900

^B chung 

Vậy tam giác ABC ~ tam giác HBA ( g.g )

25 tháng 5 2021

b, Xét tam giác AHB và tam giác CHA ta có : 

^AHB = ^CHA = 900

^ABH = ^HAC ( cùng phụ với ^BAH )

Vậy tam giác AHB ~ tam giác CHA ( g.g )

\(\Rightarrow\frac{AH}{HC}=\frac{HB}{AH}\Rightarrow AH^2=HB.HC\)

18 tháng 3 2021

a) Xét \(\Delta ABH\)có BI là phân giác của \(\widehat{ABH}\)(vì BD là phân giác của \(\widehat{ABC}\))

\(\Rightarrow\frac{IA}{IH}=\frac{BA}{BH}\)(tính chất)

\(\Rightarrow IA.BH=IH.AB\)(diều phải chứng minh)

18 tháng 3 2021

Xét \(\Delta ABC\)và \(\Delta HBA\)có:

\(\widehat{AHB}=\widehat{CAB}\left(=90^0\right)\)

\(\widehat{CBA}\)chung.

\(\Rightarrow\Delta ABC\approx\Delta HBA\left(g.g\right)\)(điều phải chứng minh)

19 tháng 3 2021

A B C H K M I

a, Xét tam giác BAC và tam giác AHC ta có : 

^BAC = ^AHC = 900

^C _ chung 

Vậy tam giác BAC ~ tam giác AHC ( g.g )

b, Xét tam giác AHB và tam giác HKA ta có 

^BHA = ^HKA = 900

^BAH = ^AHK ( so le trong )

Vậy tam giác AHB = tam giác HKA ( g.g )

\(\Rightarrow\frac{AH}{HK}=\frac{AB}{AH}\)( tỉ số tương ứng ) \(\Rightarrow AH^2=AB.HK\)

14 tháng 8 2021

A B C H I D O

a, H là trực tâm của tg ABC => BH _|_ AC mà CD _|_ AC => BH // DC

                                                  CH _|_ AB mà BD _|_ AB => CH // BD

=> BHCD là hình bình hành

b, BHCD là hbh (Câu a) => BC cắt HD tại trung điểm của mỗi đường

mà có I là trung điểm của BC )gt-

=> I là trung điểm của HD

=> H;I;D thẳng hàng

c, xét tam giác AHD có : H là trung điểm của HD và o là trung điểm của AD

=> OI là đường trung bình của tam giác AHD

=> OI = AH/2

=> 2OI = AH

d, đang nghĩ

a) Tứ giác BHCDBHCD có:
BH//DC  (do cùng ⊥AC
CH//BD   (do cùng ⊥AB
⇒BHCD là hình bình hành (