Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng Py-Ta-Go vào tam giác AHB => AB = 3
Sin B = \(\frac{AH}{AB}=\frac{2}{3}\)=> Góc B =41*48**=>Góc C = 48*12**
AC =AB.tanB=3.tanB=2,6
Py-Ta-Go => BC = 3,9
\(CH=\dfrac{AH^2}{BH}=16\left(cm\right)\)
\(AB=\sqrt{BH\cdot BC}=\sqrt{9\cdot25}=15\left(cm\right)\)
AC=20(cm)
\(\widehat{B}\simeq37^0\)
\(\widehat{C}\simeq53^0\)
Áp dụng HTL:
\(CH=\dfrac{AH^2}{BH}=16\left(cm\right)\Rightarrow BC=BH+BC=25\left(cm\right)\)
\(\Rightarrow\left\{{}\begin{matrix}AB=\sqrt{BH\cdot BC}=15\left(cm\right)\\AC=\sqrt{CH\cdot BC}=20\left(cm\right)\end{matrix}\right.\)
\(\sin B=\dfrac{AC}{BC}=\dfrac{20}{25}=\dfrac{4}{5}\approx53^0\Rightarrow\widehat{B}\approx53^0\\ \widehat{C}=90^0-\widehat{B}\approx90^0-53^0=37^0\)
Đề sai rồi bạn
cái kia ko phải là B=3 mà là BH=3