Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta HBA\)và \(\Delta ABC\)có :
\(\widehat{AHB}=\widehat{BAC}=90^o;\widehat{B}\left(chung\right)\)
\(\Rightarrow\)\(\Delta HBA\)\(\approx\)\(\Delta ABC\)( g.g )
b) Xét \(\Delta HBA\)và \(\Delta HAC\)có :
\(\widehat{AHB}=\widehat{AHC}=90^o\)
\(\widehat{BAH}=\widehat{ACH}\left(cung-phu-\widehat{B}\right)\)
\(\Rightarrow\Delta HBA\approx\Delta HAC\left(g.g\right)\)
\(\Rightarrow\frac{BH}{AH}=\frac{AH}{HC}\Rightarrow AH^2=BH.HC\)
a: BC=10cm
Xét ΔBAC có BD là phân giác
nên AD/AB=CD/BC
=>AD/3=CD/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{8}{8}=1\)
Do đó: AD=3cm; CD=5cm
b: Xét ΔABC vuong tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
c: Xét ΔABI và ΔCBD có
\(\widehat{ABI}=\widehat{CBD}\)
\(\widehat{BAI}=\widehat{BCD}\)
Do đó: ΔABI\(\sim\)ΔCBD
bn vẽ mình cái hình được ko.