K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2021

A B C 6 8 H D I

a, Xét tam giác ABC vuông tại A, có AH là đường cao 

Áp dụng định lí Py ta go ta có : 

\(BC^2=AB^2+AC^2=36+64\)

\(\Rightarrow BC^2=100\Rightarrow BC=10\)cm 

Vì BD là phân giác ^ABC nên 

\(\frac{AB}{BC}=\frac{AD}{DC}\)(1) mà \(AD=AC-DC=8-DC\)

hay \(\frac{6}{10}=\frac{8-DC}{DC}\Rightarrow6DC=80-10DC\)

\(\Leftrightarrow16DC=80\Leftrightarrow DC=5\)cm 

\(\Rightarrow AD=AC-DC=8-5=3\)cm 

b, Xét tam giác BHA và tam giác BAC ta có 

^BHA = ^A = 900

^B _ chung 

Vậy tam giác BHA ~ tam giác BAC ( g.g )

\(\Rightarrow\frac{BH}{BA}=\frac{AB}{BC}\) ( tỉ số đồng dạng ) (2) 

Từ (1) và (2) \(\Rightarrow\frac{BH}{BA}=\frac{AD}{DC}\)(3)

xem lại đề đi nếu như thành \(\frac{IH}{AD}=\frac{IA}{DC}\)

sao lại có tam giác IHA được ? hay còn cách nào khác ko ? 

23 tháng 3 2021

cần phần c

 

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC có 

BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{AB}=\dfrac{DC}{BC}\)(Định lí tia phân giác của tam giác)

\(\Leftrightarrow\dfrac{AD}{6}=\dfrac{DC}{10}\)

mà AD+DC=AC(D nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{DC}{10}=\dfrac{AD+DC}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{DC}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\DC=5\left(cm\right)\end{matrix}\right.\)

Vậy: AD=3cm; DC=5cm

12 tháng 5 2018

a) Xét  \(\Delta BAH\) và      \(\Delta BCA\)có:

         \(\widehat{B}\) chung

        \(\widehat{BHA}=\widehat{BAC}=90^0\)

suy ra:   \(\Delta BAH~\Delta BCA\)  (g.g)

\(\Rightarrow\)\(\frac{AB}{BC}=\frac{BH}{AB}\)

\(\Rightarrow\)\(AB^2=BH.BC\)

c)  Áp dụng định lý Pytago vào tam giác vuông ABC ta có:

      \(AB^2+AC^2=BC^2\)

\(\Rightarrow\)\(BC=10\)

\(\Delta ABC\)có  AK  là phân giác  

\(\Rightarrow\)\(\frac{KB}{AB}=\frac{KC}{AC}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

    \(\frac{KB}{AB}=\frac{KC}{AC}=\frac{KB+KC}{AB+AC}=\frac{5}{7}\)

suy ra:  \(KB=\frac{30}{7}\)     \(KC=\frac{40}{7}\)

c) Xét  \(\Delta ABD\)và   \(\Delta HBI\)có:

    \(\widehat{ABD}=\widehat{HBI}\) (gt)

   \(\widehat{BAD}=\widehat{BHI}=90^0\)

suy ra:  \(\Delta ABD~\Delta HBI\)

\(\Rightarrow\)\(\frac{AB}{HB}=\frac{BD}{BI}\)

\(\Rightarrow\)\(AB.BI=BD.HB\)

d)    \(S_{ABC}=\frac{1}{2}.AB.AC=24\)

 \(\Delta ABH~\Delta CBA\) (câu a)

\(\Rightarrow\)\(\frac{S_{ABH}}{S_{CBA}}=\left(\frac{AB}{BC}\right)^2=\frac{9}{16}\)

\(\Rightarrow\)\(S_{ABH}=\frac{9}{16}.S_{ABC}=13,5\)

12 tháng 5 2018

â) chứng minh AB2 = BH . BC 

 Xét : \(\Delta ABHva\Delta ABC,co\):

       \(\widehat{B}\) là góc chung 

       \(\widehat{A}=\widehat{H}=90^o\)

Do do : \(\Delta ABH~\Delta ABC\left(g-g\right)\)

=> \(\frac{AB}{HB}=\frac{BC}{AB}\) (tỉ lệ tương ứng của 2 tam giác đồng dạng ) 

=> AB . AB = BH . BC

=> AB2       = BH . BC 

b)

a: BC=10cm

Xét ΔBAC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5

Áp dụng tính chất của dãy tỉ sốbằng nhau, ta được:

AD/3=CD/5=(AD+CD)/(3+5)=8/8=1

=>AD=3cm; CD=5cm

b: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có

góc ABD=góc HBI

Do đó:ΔBAD đồng dạng với ΔBHI

Suy ra: BA/BH=BD/BI

hay \(BA\cdot BI=BH\cdot BD\)

c: góc AID=góc BIH=90 độ-góc DBC

góc ADI=90 độ-góc ABD

mà góc DBC=góc ABD

nên góc AID=góc ADI

hay ΔAID cân tại A

 

b: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có

góc ABD=góc HBI

Do đó:ΔBAD đồng dạng với ΔBHI

Suy ra: BA/BH=BD/BI

hay \(BA\cdot BI=BH\cdot BD\)

c: góc AID=góc BIH=90 độ-góc DBC

góc ADI=90 độ-góc ABD

mà góc DBC=góc ABD

nên góc AID=góc ADI

hay ΔAID cân tại A

18 tháng 5 2021

ez

 

a: BC=10cm

Xét ΔBAC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5

Áp dụng tính chất của dãy tỉ sốbằng nhau, ta được:

AD/3=CD/5=(AD+CD)/(3+5)=8/8=1

=>AD=3cm; CD=5cm

b: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có

góc ABD=góc HBI

Do đó:ΔBAD đồng dạng với ΔBHI

Suy ra: BA/BH=BD/BI

hay \(BA\cdot BI=BH\cdot BD\)

c: góc AID=góc BIH=90 độ-góc DBC

góc ADI=90 độ-góc ABD

mà góc DBC=góc ABD

nên góc AID=góc ADI

hay ΔAID cân tại A

30 tháng 3 2022

a, Xét ΔABC và ΔHBA có :

\(\widehat{A}=\widehat{AHB}=90^0\)

\(\widehat{B}:chung\)

\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g-g\right)\)

b, Xét ΔABC vuông tại A, theo định lý Pi-ta-go ta có :

\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

Ta có : \(\Delta ABC\sim\Delta HBA\left(cmt\right)\)

\(\Rightarrow\dfrac{AC}{AH}=\dfrac{BC}{AB}\)

hay \(\dfrac{8}{AH}=\dfrac{10}{6}\)

\(\Rightarrow AH=\dfrac{8.6}{10}=4,8\left(cm\right)\)

c, Xét ΔAHB và ΔCHA có :

\(\widehat{BHA}=\widehat{AHC}=90^0\)

\(\widehat{BAH}=\widehat{C}\left(phụ\cdot với\cdot\widehat{B}\right)\)

\(\Rightarrow\Delta AHB\sim\Delta CHA\left(g-g\right)\)

\(\Rightarrow\dfrac{AH}{HC}=\dfrac{BH}{AH}\)

\(\Rightarrow AH^2=HC.BH\)

d, Xét ΔABD và ΔHBI có :

\(\widehat{H}=\widehat{A}=90^0\)

\(\widehat{ABD}=\widehat{HBI}\left(phân\cdot giác\cdot BD\right)\)

\(\Rightarrow\Delta ABD\sim\Delta HBI\left(g-g\right)\)

\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BD}{BI}\)

\(\Rightarrow AB.BI=BD.HB\left(đpcm\right)\)

24 tháng 4 2017

a, áp dụng định lí py-ta-go để tính cạnh BC 

   áp dụng đường phân giác BD suy ra tỉ số AD/AB=DC/BC

 từ đó thay số vào và tính được AD và DC

b,Xét tam giác ABD và tam giác HBI có :

         BAD=BHI (=90 độ)

         B1=B2(p/g)

suy ra : 2 tam giác đồng dạng và lập tỉ số AB/BD=HB/BI

suy ra :AB.BI=BD.HB(đccm)

c,Vì trong tam giác ABD có :góc BDA + B1 =90dộ

                            BIH có :góc BIH +B2 +90độ

                            mà B1=B2

suy ra :góc BDA =AID . Suy ra tam giác AID cân tại A . 

24 tháng 4 2017

A) Theo định lý Py-ta-go trong tam giác ABC vuông tại A ta có :

 \(BC^2=AB^2+AC^2\)\(\Leftrightarrow BC^2=6^2+8^2=100\)\(\Leftrightarrow BC=\sqrt{100}=10\)

 Do BD là đường phân giác của góc \(\widehat{D}\)nên ta có tỉ lệ : \(\frac{AD}{DC}=\frac{AB}{BC}\)

theo tính chất  tỉ lệ thức ta có : \(\frac{AD}{DC+AD}=\frac{AB}{BC+AB}\)hay \(\frac{AD}{8}=\frac{6}{14}\)\(\Rightarrow AD=\frac{6\cdot8}{14}\approx3,43\)

                                                                                                                     \(\Rightarrow DC=AC-AD=8-3,43=4,57\)

 B) Xét \(\Delta BIH\)và \(\Delta ABD\)có : \(\widehat{BAD}=\widehat{BHI}\)và   \(\widehat{ABD}=\widehat{IBH}\)(Do BD là đường phân giác của góc D)

\(\Rightarrow\Delta BHI\)\(\infty\) \(\Delta BAD\)(g.g)  ;     Ta được tỉ lệ : \(\frac{BH}{AB}=\frac{BI}{BD}\)\(\Rightarrow AB\cdot BI=BH\cdot BD\left(đpcm\right)\)

 C) C\m theo tam giác có hai cạnh bên bằng nhau là tam giác cân

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét ΔBAC có BD là phan giác

=>AD/AB=DC/BC

=>AD/3=DC/5=8/8=1

=>AD=3cm; DC=5cm

b: Xét ΔBAD vuông tại A va ΔBHI vuông tại H có

góc ABD=góc HBI

=>ΔBAD đồng dạng với ΔBHI

=>AD/HI=BA/BH

=>AD*BH=HI*BA
c: góc ADI=góc BIH=góc AID

=>ΔAID cân tại A