Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình không biết vẽ hình nên chỉ giải cho bạn thôi nha
a) Xét tam giác DBA và Tam giác ABC có
D=A=90 độ
B góc chung
vậy tam giác DBA đồng dạng với tam giác ABC (g.g)
b)
vì Góc A = 90 độ nên góc B + góc C = 90 độ
mà Góc B = 2Góc c nên 2góc C+ góc C =90 độ
<=> 3Góc C=90 độ => Góc C = 30 độ
Góc B=60 độ
mà BE là phân giác Góc B nên góc ABE= góc EBC= ECB = 30 độ
Xét Tam giác ABE và Tam giác ACB có
Góc A chung
góc ABE= ECB(cmt)
vậy Tam giác ABE đồng dạng với tam giác ACB(g.g)
=> \(\frac{AB}{AC}=\frac{AE}{AB}\Rightarrow AB.AB=AC.AE\)(điều phải chứng minh)
c) Vì tam giác DBA đồng dạng với tam giác ABC
=> \(\frac{AB}{BC}=\frac{BD}{AB}\)(1)
Tam giác ABD có BF là phân giác góc B, ta có
\(\frac{FD}{FA}=\frac{BD}{AB}\left(2\right)\)
Tam giác ABC có BE là phân giác góc B, ta có:
\(\frac{AE}{EC}=\frac{AB}{AC}\left(3\right)\)
Từ (1),(2) và (3) ta suy ra \(\frac{FD}{FA}=\frac{AE}{EC}\Rightarrow EA.FA=EC.FD\)(điều phải chứng minh)
a: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có
góc C chung
Do đó: ΔCDA\(\sim\)ΔCEB
b: Xét ΔHEA vuông tại E và ΔHDB vuông tại D có
\(\widehat{AHE}=\widehat{BHD}\)
Do đó: ΔHEA\(\sim\)ΔHDB
Suy ra: HE/HD=HA/HB
hay \(HE\cdot HB=HD\cdot HA\)
a: Xét ΔBHE vuông tại E và ΔBAH vuông tạiH có
góc B chung
=>ΔBHE đồng dạngvơi ΔBAH
b: góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
c,d: Xét ΔAHC vuông tại H có HF là đường cao
nên AH^2=AF*AC và CH^2=CF*CA
e: AE*AB=AF*AC=AH^2
=>AE/AC=AF/AB
mà góc EAF chung
nên ΔAEF đồng dạng với ΔACB
A B C D 6 8 E H
a)BC2 =AB2+AC2 ( định lí Pitago)
=> BC=10
Dựa vào t/c đường phân giác ta có
AB/AD=BC/DC=AB+BC/ AD+DC= 16/8=2
=> AD= 3; DC=5
=>AD/DC= 3/5
b)có GÓC A =GOC E= 90 ĐỘ
VÀ GÓC ABD =GÓC EBC (VÌ BD LA BD GÓC ABC)
=>TG ABD đồng dạng tam giác EBC(gg)
c) d) cũng khá dễ nên bạn tự làm nha (gợi ý kết hợp b,c để gải d)
a: Sửa đề: ΔDCA đồng dạng với ΔACB
Xét ΔDCA vuông tại D và ΔACB vuông tại A có
\(\widehat{DCA}\) chung
Do đó: ΔDCA~ΔACB
b: Xét ΔDBA vuông tại D và ΔABC vuông tại A có
\(\widehat{DBA}\) chung
Do đó: ΔDBA~ΔABC
c: Xét ΔDCA vuông tại D và ΔDAB vuông tại D có
\(\widehat{DCA}=\widehat{DAB}\left(=90^0-\widehat{B}\right)\)
Do đó: ΔDCA~ΔDAB