K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì \(\Delta ABC\)vuông cân tại A

=> AB = AC 

Mà BAD + CAD = 90*

DBA + BAD  = 90* 

=> ABD = DAC 

Xét \(\Delta ABD\)và \(\Delta ACE\)có 

AB = AC

ABD = DAC

=> \(\Delta ABD=\Delta ACE\)( cạnh huyền - góc nhọn )

1:

a: Xét ΔABD vuông tại D và ΔCAE vuông tại E có

AB=CA
góc ABD=góc CAE

=>ΔABD=ΔCAE

b: ΔABD=ΔCAE

=>BD=AE: AD=CE

=>BD-CE=BD-AD=DE

24 tháng 3 2020

A B C D E

Do xy không cắt đoạn BC

=> xy //BC 

=> ECBD là hình chữ nhật'

Xét \(\Delta ABD\)và \(\Delta ACE\)có: \(\hept{\begin{cases}AB=AC\left(gt\right)\\\widehat{AEC}=\widehat{ADB}=90^o\\EC=BD\end{cases}}\)

=> \(\Delta ABD=\Delta ACE\)

=> AE=AD

=> Tam giác ADE cân tại E

\(\widehat{ACB}=45^o\Rightarrow\widehat{ECA}=45^o\)

=> EC=EA

Tương tự: AD=BD 

=> DE=AE+AD=EC+BD

a, Xét \(\Delta\)ABD và \(\Delta\)ACE ta cs :

AB = AC (gt)

^AEC = ^ADB = 900

CE = BD (gt)

=> \(\Delta\)ABD = \(\Delta\)ACE

b, Ta có xy không cắt BC

=> xy//BC

=> ^DBA= ^DAB (vị trí đồng vị)

=> \(\Delta\) BDA cân tại D

=> DA=DB

\(\Delta\)EAC cân tại E (cmt)

=> EA=EC

=> DE = AD + AC = BD + CE

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0
9 tháng 5 2019

đề bài có thiếu ko bn?

A B C D E M N H

a) Xét \(\Delta ABC\)\(\Delta ADE\):

AB=AD(gt)

\(\widehat{BAC}=\widehat{DAE}=90^o\)

AC=AE(gt)

=> \(\Delta ABC=\Delta ADE\left(c-g-c\right)\)

=> BC=DE ( 2 cạnh tương ứng)

=> Đpcm

b) Ta có \(\Delta ABD\)vuông cân tại A

=> \(\widehat{ABD}=\widehat{ADB}=\frac{\widehat{DAB}}{2}=\frac{90^o}{2}=45^o\)

\(\Delta AEC\)vuông cân tại A

=> \(\widehat{AEC}=\widehat{ACE}=\frac{\widehat{EAC}}{2}=\frac{90^o}{2}=45^o\)

=> \(\widehat{BDA}=\widehat{ECA}=45^o\)

Mà 2 góc này ở vị trí so le trong

=> BD//CE

=> Đpcm

c) Sửa đề: Kẻ dường cao AH của tam giác ABC cắt DE tại M. Vẽ đường thẳng qua A và vuông góc với MC cắt BC tại N. Chứng minh rằng CA vuông góc với NM

Gọi giao điể của NA và MC là I

Xét \(\Delta NMC\)có:

\(\hept{\begin{cases}NI\perp MC\\MH\perp NC\end{cases}}\)

Mà 2 đường cao này cắt nhau tại A

=> A là trực tâm của \(\Delta MNC\)

=> \(CA\perp NM\)

=> Đpcm

d) Ta có: \(\widehat{ADM}=\widehat{ABC}\left(\Delta ADE=\Delta ABC\right)\)

=> \(\widehat{ADM}+\widehat{AED}=\widehat{ABC}+\widehat{BAH}=90^o\)

=> \(\widehat{AED}=\widehat{BAH}\) Mà \(\widehat{BAH}=\widehat{MAE}\left(đđ\right)\)

=> \(\widehat{AED}=\widehat{MAE}\)

=> \(\Delta MAE\)cân tại M

=> MA=ME (1)

Lại có: \(\widehat{AED}=\widehat{ACB}\Rightarrow\widehat{AED}+\widehat{ADE}=\widehat{ACB}+\widehat{CAH}=90^o\)

=> \(\widehat{ADE}=\widehat{CAH}\)

Mà \(\widehat{CAH}=\widehat{DAM}\left(đđ\right)\)

=> \(\widehat{ADE}=\widehat{DAM}\)

=> \(\Delta DAM\)cân tại M

=> MD=MA (2)

Từ (1) và (2)

=> MA=MD=ME

=> \(MA=\frac{1}{2}DE\)

=> Đpcm

P/s: Thật ra định làm tắt cho bạn tự suy luận, nhưng sợ bạn ko hiểu nên thoi, mỏi cả tay:>>>

15 tháng 5 2018

Câu a  (1,0đ) Chứng minh :ABD = ACE

Xét ABD và ACE :có AB=AC (cạnh bên cân); =(góc đáycân);BD=CE (gt)  (0,25đ)  x3=(0,75đ)  

Vậy ABD = ACE(cgc)                                                    (0,25đ)  

Câu b (0,75đ)  Chứng minh đúng vuông AMD =  vuông ANE vì có AD = AE;

(do ABD =ACE)                                                             (0,5đ)

Kết luận  AMD = ANE và suy ra  AM =AN)                (0,25đ)  

Câu c (0,75đ): Chứng minh đúng vuông BMD = vuông CNE  (cạnh huyền - góc nhọn )(0,25đ)

 Lập luận  chứng minh được rồi suy ra KDE cân tại K (1)(0,25đ)

Từ  lập luận để (2)

Kết hợp (1)và (2) KDE đều )(0,25đ)

16 tháng 5 2018

https://olm.vn/hoi-dap/question/1231127.html

16 tháng 5 2018

a) Xét tam giác ABD và tam giác ACE có:

          AB = AC (Vì tam giác ABC cân tại A)

         \(\widehat{ABC}=\widehat{ACB}\)(vì tam giác ABC cân tại A)

         BD = CE (gt)

Do đó ​tam giác ABD = tam giác ACE(cgc)

b) Ta có: tam giác ABD = tam giác ACE (cmt)

    \(\Rightarrow\)AD = AE (hai cạnh tương ứng) (1)

    \(\Rightarrow\widehat{BAD}=\widehat{CAE}\)(hai góc tương ứng) (2)

Từ (1) và (2) \(\Rightarrow\) tam giác vuông AMD = tam giác vuông ANE (ch-gn) 

     \(\Rightarrow\)AM = AN (hai cạnh tương ứng)

c) Trong tam giác ABC có góc BAC=120 độ

\(\Rightarrow\)Góc ABC = góc ACB = \(\frac{180-120}{2}\)=  30 độ

 Trong tam giác vuông BMD có góc MBD = 30 độ \(\Rightarrow\widehat{MDB}=60\)độ

Tương tự: Ta được, trong tam giác vuông NCE có góc NEC =60 độ

\(\Rightarrow\)\(\widehat{MDB}=\widehat{NEC}\)(=60 độ)

Mặt khác: \(\widehat{MDB}=\widehat{EDK}\left(đđ\right)\)

                \(\widehat{NEC}=\widehat{DEK}\left(đđ\right)\)

\(\Rightarrow\widehat{EDK}=\widehat{DEK}\)(=60 độ)

\(\Rightarrow\widehat{DKE}=180-\left(60\times2\right)=60\)độ

\(\Rightarrow\)Trong tam giác DKE có 3 góc EDK;DEK;DKE cùng bằng 60

  Hay tam giác DKE đều.

         

      

16 tháng 5 2018

a) Xét hai tam giác ABD và ACE ta có

AB = AC (gt)

\(\widehat{ABD}=\widehat{ACE}\left(gt\right)\)

BD = CE (gt)

Do đó: \(\Delta ABD=\Delta ACE\left(c-g-c\right)\)

b) Ta có: \(\Delta ABD=\Delta ACE\)(câu a)

\(=>\hept{\begin{cases}\widehat{BAD}=\widehat{EAC}\\AD=AE\end{cases}}\)(cặp góc và cặp cạnh tương ứng)

Xét hai tam giác vuông AMD và ANE ta có

AD = AE (cmt)

\(\widehat{MAD}=\widehat{EAN}\left(cmt\right)\)

Do đó: \(\Delta AMD=\Delta ANE\left(c.h-g.n\right)\)

=> AM =AN (cặp cạnh tương ứng)

c) Trong \(\Delta ABC\)cân tại A ta có: \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{BAC}}{2}=\frac{180^o-120^0}{2}=30^o\)

Trong \(\Delta MDB\)vuông tại M ta có: \(\widehat{BDM}=90^o-\widehat{DBM}=90^o-30^o=60^o\)

Ta lại có: \(\widehat{ABC}=\widehat{ACB}\left(gt\right)\)

=> \(\widehat{MDB}=\widehat{NEC}\)(vì cùng bù với \(\widehat{ABC}\))

mà \(\hept{\begin{cases}\widehat{BDM}=\widehat{KDE}\left(đđ\right)\\\widehat{NEC}=\widehat{DEK}\left(đđ\right)\end{cases}}\)

=> \(\widehat{KDE}=\widehat{KED}=60^o\)(1)

Trong \(\Delta DKE\)có: \(\widehat{KDE}+\widehat{KED}+\widehat{DKE}=180^o\)

                            hay \(60^o+60^o+\widehat{DKE}=180^o\)   

                                    \(120^o+\widehat{DKE}=180^o\)

                                                      \(\widehat{DKE}=180^o-120^o\)

                                                      \(\widehat{DKE}=60^o\)(2)

Từ (1) và (2) => \(\Delta DKE\)là tam giác đều

P/s: k hộ thần :3

                                                     

Bài 1:Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).a, Chứng minh HB=HCb, Tính độ dài AH.c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.d, So sánh HD và HC.Bài 2:Cho tam giác ABC cân tại A có đường cao AH.a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.b, Cho BH= 8cm, AB= 10cm.Tính AH.c,, Gọi E là trung điểm...
Đọc tiếp

Bài 1:
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).
a, Chứng minh HB=HC
b, Tính độ dài AH.
c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.
d, So sánh HD và HC.
Bài 2:
Cho tam giác ABC cân tại A có đường cao AH.
a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.
b, Cho BH= 8cm, AB= 10cm.Tính AH.
c,, Gọi E là trung điểm của AC và G là giao điểm của BE và AH.Tính HG.
d, Vẽ Hx song song với AC, Hx cắt AB tại F. Chứng minh C, G, F thẳng hàng.
Bài 3
Cho tam giác ABC có CA= CB= 10cm, AB= 12cm.kẻ CI vuông góc với AB.Kẻ IH vuông góc với AC, IK vuông góc với BC.
a, Chứng minh IB= IC và tính độ dài CI
b, Chứng minh IH= IK.
c, HK// AC.
Bài 4:
Cho tam giác ABC cân tại A, vẽ AH vuông góc với BC tại H.Biết AB= 10cm, BH= 6cm.
a, Tính AH
b, tam giác ABH= tam giác ACH.
c, trên BA lấy D, CA lấy E sao cho BD= CE.Chứng minh tam giác HDE cân.
d, AH là trung trực của DE.
Bài 5:
Cho tam giác ABC cân tại AGọi D là trung điểm của BC.Từ D kẻ DE vuông góc với AB, DF vuông góc với AC. Chứng minh rằng:
a, tam giác ABD= tam giác ACD.
b, AD vuông góc với BC.
c, Cho AC= 10cm, BC= 12cm.Tính AD.
d, tam giác DEF cân.
Bài 6:
Cho tam giác ABC cân tại A có góc A < 900. kẻ BH vuông góc với AC ,CK vuông góc với AC.Gọi O là giao điểm của BH và CK.
a, Chứng minh tam giác ABH=Tam giác ACH.
b, Tam giác OBC cân.
c, Tam giác OBK = tam giác OCK.
d, trên nửa mặt phẳng bờ BC không chứa điểm A lấy I sao cho IB=IC.Chứng minh 3 điểm A, O, I thẳng hàng.
Bài 7
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, Tam giác ABD=tam giác ACE.
b, Tam giác BHC cân.
c, ED//BC
d, AH cắt BC tại K, trên HK lấy M sao cho K là trung điểm của HM.Chứng minh tam giác ACM vuông.
Bài 8
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, BD= CE.
b, Tam giác BHC cân.
c, AH là trung trực của BC
d, Trên tia BD lấy K sao cho D là trung điểm của BK.So sánh góc ECB và góc DKC.
Bài9
Cho tam giác ABC cân tại A.vẽ trung tuyến AM .từ M kẻ ME vuông góc với AB tại E.kẻ MF vuông góc với AC tại F.
a, chứng minh tam giác BEM= tam giác CFM.
b, AM là trung trực vủa EF.
c, từ B kẻ đường thẳng vuông góc với AB tại B, từ C kẻ đường thẳng vuông góc với AC tại C, hai đường này cắt nhau tại D.Chứng minh A,M,D thẳng hàng.
Bài 10
Cho tam giác ABC cân tại AGọi M là trung điểm của AC.Trên tia đối MB lấy D sao cho DM= BM.
a, Chứng minh Tam giác BMC= tam giác DMA.Suy ra AD//BC.
b, tam giác ACD cân.
c. trên tia đối CA lấy E sao cho CA= CE.Chuwngsminh DC đi qua trung điểm I của BE.
Bài 11: Cho tam giác ABC cân tại A (AB = AC ), M là trung điểm của BC. Gọi D là điểm là điểm nằm giữa A và M. Chứng minh rằng:
a) AM là tia phân giác của góc A?
b) (ABD = (ACD.
c) (BCD là tam giác cân ?
Bài 12: Cho tam giác ABC vuông tại A , đường phân giác BD. Kẻ DE vuông góc với BC (E BC). Gọi F là giao điểm của BA và ED.

Giúp mk với các bạn đẹp trai xinh gái ai làm đúng mk tik cho 

Sắp hết Tết rùi giúp mk vs

9
26 tháng 4 2020

uôi dài v**

26 tháng 4 2020

ủa r viết ngần đó thì mất bn tg thek