Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
click vào đường giải dưới đây
hình 9 | Diễn đàn HOCMAI - Cộng đồng học tập lớn nhất Việt Nam
Câu 1:
a: Xét ΔAHB vuông tạiH có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)
\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)
A B C H M E F N I
A. Ta có \(\frac{AH}{AC}=\frac{3}{5}\Rightarrow AC=\frac{5}{3}AH\)
Theo hệ thức lượng trong tam giác vuông ta có \(AB^2=BC^2-AC^2=\frac{AB^2AC^2}{AH^2}-AC^2\Rightarrow15^2=\frac{15^2.\frac{25}{9}AH^2}{AH^2}-AC^2\)
\(\Rightarrow AC^2=400\Rightarrow AC=20\left(cm\right)\Rightarrow BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)
\(\Rightarrow HB=\frac{AB^2}{BC}=9\left(cm\right);HC=BC-BH=25-9=16\left(cm\right)\)
b.Vì E;F là hình chiếu của H lên AB;AC \(\Rightarrow\widehat{E}=\widehat{F}=\widehat{A}=90^0\Rightarrow AEHF\)là hình chữ nhật
c. Gỉa sử \(AM⊥EF\)\(\Rightarrow\)ta phải chứng minh M là trung điểm BC
Gọi I là giao điểm của EF và AH ; N là giao của EF và AM
Xét tam giác AIN và tam giác AHM
có \(\hept{\begin{cases}\widehat{A}chung\\\widehat{N}=\widehat{H}=90^0\end{cases}\Rightarrow\Delta AIN~\Delta AHM\left(g-g\right)\Rightarrow\widehat{AIN}=\widehat{AMH}\left(1\right)}\)
Xét tam giác AEF và tam giác ACB có \(\hept{\begin{cases}\widehat{A}=90^0chung\\\widehat{C}=\widehat{E}\left(+\widehat{B}=90^0\right)\end{cases}\Rightarrow\Delta AEF~\Delta ACB\left(g-g\right)\Rightarrow\widehat{AFE}=\widehat{B}\left(2\right)}\)
Vì AEHF là hình chữ nhật nên \(\widehat{IFA}=\widehat{IAF}\left(3\right)\)
Lại có \(\widehat{AIF}=180^0-2.\widehat{IFA}\)
Từ (1) ;(2) và (3) \(\Rightarrow\widehat{AMB}=180^0-2.\widehat{B}\Rightarrow\Delta AMB\)cân tại M \(\Rightarrow MA=MB\)
Tương tự chứng minh được \(MA=MC\)\(\Rightarrow M\)là trung điểm BC
Vậy trung tuyến AM vuông góc với EF
d. Gỉa sử tam giác ABC vuông cân \(\Leftrightarrow AB=AC\Rightarrow S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AB^2\left(4\right)\)
\(\Delta ABC\)vuông cân \(\Leftrightarrow AE=AF\Rightarrow S_{AEHF}=AE.AF=AE^2=\frac{1}{4}AB^2\Rightarrow2S_{AEHF}=\frac{1}{2}AB^2\left(5\right)\)
Từ (4) và (5) ta có \(S_{ABC}=2S_{AEHF}\)đúng với giả thiết ban đầu
Vậy giả sử \(S_{ABC}=2S_{AEHF}\)thì tam giác ABC vuông cân