Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N
a)Ta có : tam giác ABC vuông tại A (gt)
Mà: AM=BC/2(gt)
=>M là trung điểm của BC
=>BM=CM=AM=BC/2
=>tam giác AMB cân tại M
b)Ta có : tam giác AMB cân tại M
Mà: MN là trung tuyến của tam giác AMB nên:
MN cũng là đường cao của tam giác AMB
=>MN vuông góc với AB
Mà AC vuông góc với AB (tam giác ABC vuông tại A)
nên: MN//AC
=>MNAC là hình thang
Ta lại có: góc BAC =90o
Vậy MNAC là hình thang vuông
Ta có : Đường trung tuyến ứng với cạnh huyền tam giác vuông thì bằng 1/2 cạnh huyền
Mà Ta có \(AM=\frac{1}{2}BC\)
BC là cạnh huyền tam giác vuông ABC
=> AM là đường trung tuyến tam giác ABC
=>AM=MB=MC
Mà : MA=MB
=> tam giác AMB là tam giác cân tại M
Ta có
MN là đường trung tuyến trong tam giác cân AMB (AN=NB)
=> MN cũng là đường cao
=> MN vuông góc AB
mà AC cũng vuông góc AB
=>MN//AC
=> MNCA là hình thang
mà: góc MNA= góc NAC = 90 độ
=> MNAC là hình thang vuông
XONG !!!!
T I C K nha cảm ơn
C A M N B
a)Ta có : tam giác ABC vuông tại A (gt)
Mà: AM=BC/2(gt)
=>M là trung điểm của BC
=>BM=CM=AM=BC/2
=>tam giác AMB cân tại M
b)Ta có : tam giác AMB cân tại M
Mà: MN là trung tuyến của tam giác AMB nên:
MN cũng là đường cao của tam giác AMB
=>MN vuông góc với AB
Mà AC vuông góc với AB (tam giác ABC vuông tại A)
nên: MN//AC
=>MNAC là hình thang
Ta lại có: góc BAC =90o
Vậy MNAC là hình thang vuông
Trên AB lấy trung điểm M, kẻ MN vuông góc với AL ( N thuộc AC)
Qua C kẻ CQ vuông góc với AL tại E, cắt AB tại Q
Xét \(\Delta CLE\) và \(\Delta CQB\) có:
\(\widehat{CEL}=\widehat{CBQ}=90^0\)
\(\widehat{BCQ}\) chung
suy ra: \(\Delta CLE~\Delta CQB\) (g.g)
\(\Rightarrow\)\(\widehat{CLE}=\widehat{CQB}\)
mà \(\widehat{CLE}=\widehat{BLA}\) (đối đỉnh)
suy ra: \(\widehat{BLA}=\widehat{BQC}\)
Xét \(\Delta ABL\)và \(\Delta CBQ\)có:
\(\widehat{ABL}=\widehat{CBQ}=90^0\)
\(AB=AC\) (gt)
\(\widehat{BAL}=\widehat{BCQ}\) (do cùng phụ với 2 góc bằng nhau)
suy ra: \(\Delta ABL=\Delta CBQ\) (g.c.g)
suy ra: \(BL=BQ\)
mà \(BL=BM=AM\)
\(\Rightarrow\)\(AM=MB=MQ\)
mà \(MN//BP//QC\) (cùng vuông góc với AL)
\(\Rightarrow\)\(AN=NP=PC\)
\(\Rightarrow\)\(AC=3CP\)
\(\Rightarrow\)\(AC=3\sqrt{2}\)
Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(AC^2=AB^2+BC^2\)
\(\Leftrightarrow\)\(AC^2=2AB^2\) (do AB = BC)
\(\Leftrightarrow\)\(AB^2=\frac{AC^2}{2}\)
\(\Leftrightarrow\)\(AB^2=9\)
\(\Leftrightarrow\)\(AB=3\)
Vậy..
p/s: tham khảo nhé
Thật tốt, 14 năm ms gặp 1 người ... như bạn )