K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

CÂU HỎI TƯƠNG TỰ NHA

20 tháng 12 2015

Mấy bữa nay mình ghét nhất là từ chtt ấy nha câu dễ thì có trong đó nhưng những câu khó tất nhiên ko có rồi mình mong các bạn hỉu ý của mình và ai biết thì làm bài giải đầy đủ sẽ có nhìu người tick chứ cứ chtt hoài mình muốn chết còn sướng hơn các bạn thử nghĩ nếu như một lúc nào đó các bạn có bài giải rất khó nhưng ko biết làm rồi lên đây hỏi mà ai cũng trả lời là chtt các bạn có bực mình ko. Mình chỉ nói thế thôi mong các bạn sẽ hỉu và đừng ghi chữ chtt nữa.

29 tháng 10 2018

A B C H K O D E F P Q

a)  +) Gọi P và Q lần lượt là hình chiếu của O trên các đường thẳng AB và AC.

Tứ giác AHKO là hình chữ nhật => OA // HK hay OA // BC => ^FAO = ^ABC; ^EAO = ^ACB

Mà ^ABC = ^ACB = 450 => ^FAO = ^EAO = 450. Do đó: AO là tia phân giác ^EAF 

Xét góc EAF: AO là phân giác ^EAF; OP vuông góc AF; OQ vuông góc AE

=> AP = AQ và OP = OQ (T/c điểm nằm trên đường phân giác)

Xét \(\Delta\)OQE và \(\Delta\)OPF có: ^OQE = ^OPF (=900); OQ = OP; OE = OF

=> \(\Delta\)OQE = \(\Delta\)OPF (Cạnh huyền, cạnh góc vuông) => QE = PF (2 cạnh tương ứng)

Ta có: AQ = AP; QE = PF (cmt) => AQ + QE = AP + PF => AE =AF

Xét \(\Delta\)AEF: ^EAF = 900; AE = AF (cmt) => \(\Delta\)AEF vuông cân tại A (đpcm)

+) Ta thấy \(\Delta\)AEF vuông cân ở A (cmt) => ^AFE = 450 hay ^DFE = 450

Xét (O) có: ^DFE là góc nội tiếp đường tròn (O)

=> \(\widehat{DFE}=\frac{1}{2}.sđ\widebat{DE}\)=> ^DOE = 2.^DFE = 900 => DO vuông góc OE (đpcm).

b) Xét tứ giác  DAOE có: ^DAE = ^DOE (=900) => Tứ giác DAOE nội tiếp đường tròn (DE)

hay 4 điểm D;A;O;E cùng nằm trên 1 đường tròn (đpcm).

10 tháng 8 2016

GIẢI:

 

a) Xét Δ ABC và Δ AED, ta có :

\widehat{BAC}= \widehat{DAC}=90^0 (đối đỉnh)

AB = AD (gt)

AC = AD (gt)

=> Δ ABC = Δ AED (hai cạnh góc vuông)

=> BC = DE

Xét Δ ABD, ta có :

\widehat{BAC}=90^0 (Δ ABC vuông tại A)

=> AD \bot AE

=>  \widehat{BAD}=90^0

=> Δ ABD vuông tại A.

mà : AB = AD (gt)

=> Δ ABD vuông cân tại A.

=>\widehat{BDC}=45^0

cmtt : \widehat{BCE}=45^0

=> \widehat{BDC}=\widehat{BCE}=45^0

mà : \widehat{BDC},\widehat{BCE} ở vị trí so le trong

=> BD // CE

b) Xét Δ MNC, ta có :

NK \bot MC = > NK là đường cao thứ 1.

MH \bot NC = > MH là đường cao thứ 2.

NK cắt MH tại A.

=> A là trực tâm. = > CA là đường cao thứ 3.

=> MN \bot AC tại I.

mà : AB \bot AC

=> MN // AB.

c) Xét Δ AMC, ta có :

 \widehat{MAE}= \widehat{BAH} (đối đỉnh)

\widehat{MEA}= \widehat{BCA} (Δ ABC = Δ AED)

=>\widehat{MAE}=\widehat{MEA} (cùng phụ góc ABC)

=> Δ AMC cân tại M

=> AM = ME (1)

Xét Δ AMI và Δ DMI, ta có :

\widehat{AIM }= \widehat{DIM}=90^0 (MN \bot AC tại I)

IM cạnh chung.

mặt khác : \widehat{IMA }= \widehat{MAE} (so le trong)

\widehat{DMI }= \widehat{MEA} (đồng vị)

mà : \widehat{MAE}=\widehat{MEA} (cmt)

=> \widehat{IMA }= \widehat{IMD}

=> Δ AMI = Δ DMI (góc nhọn – cạnh góc vuông)

=> MA = MD (2)

từ (1) và (2), suy ta : MA = ME = MD

ta lại có : ME = MD = DE/2 (D, M, E thẳng hàng)

=>MA = DE/2.

29 tháng 6 2020

từ cách vẽ hình