Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tứ giác AEMO có:
\(\widehat{OME}=90^0,\widehat{OAE}=90^0\Leftrightarrow\widehat{OME}+\widehat{OAE}=180^0\)
mà 2 góc này ở vị trí đối nhau nên tứ giác AEOM nt đường tròn đk EO
b, Theo tính chất tiếp tuyến ta thấy:
EO là tia phân giác của MOA
OF là tia phân giác của MOB
mà MOB và MOA là hai góc kề bù nên EOF =90
c,ta thấy
OMEA nt đường tròn đk EO nên MAB=FEO(cùng nhìn cạnh MO)
xét \(\Delta ABM\)và \(\Delta OEF\)
\(\widehat{MAB}=\widehat{OEF}\left(cmt\right)\)
\(\widehat{AMB}=\widehat{EOF}\left(=90^0\right)\)
\(\Rightarrow\Delta ABM\sim\Delta EFO\)\(\Rightarrow dpcm\)
Bài 2:
a: Xét ΔOHA vuông tại A và ΔOHB vuông tại B có
OH chung
\(\widehat{AOH}=\widehat{BOH}\)
Do đó: ΔOHA=ΔOHB
Suy ra: HA=HB
hay ΔHAB cân tại H
b: Xét ΔOAB có
OH là đường cao
AD là đường cao
OH cắt AD tại C
Do đó: C là trực tâm của ΔOAB
Suy ra: BC\(\perp\)Ox
c: \(\widehat{HOA}=\dfrac{60^0}{2}=30^0\)
Xét ΔOHA vuông tại A có
\(\cos HOA=\dfrac{OA}{OH}\)
\(\Leftrightarrow OA=\dfrac{\sqrt{3}}{2}\cdot4=2\sqrt{3}\left(cm\right)\)
a, Gọi \(I\left(x;y\right)\) là tâm đường tròn ngoại tiếp \(\Delta ABC\)
\(\Rightarrow\left\{{}\begin{matrix}IA=IB\\IA=IC\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}IA^2=IB^2\\IA^2=IC^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(-3-x\right)^2+\left(6-y\right)^2=\left(1-x\right)^2+\left(-2-y\right)^2\\\left(-3-x\right)^2+\left(6-y\right)^2=\left(6-x\right)^2+\left(3-y\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=-5\\3x-y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)