K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2015

Ta co BM2 + CM2 = 2ME2 + 2MF= 2 ( ME2 +MF2)

ma ME2 +MF2 = EF(  dinh ly pitago trong tam giac vuong EMF )

nen BM2+CM2 = 2 EF2

lai co EF = AM ( AEMF la hcn)

-> BM2 +CM2 = 2AM2

 

a: Xét tứ giác AEMF có

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

=>AEMF là hình chữ nhật

b: Ta có: AEMFlà hình chữ nhật

=>AM cắt EF tại trung điểm của mỗi đường và AM=EF

=>O là trung điểm chung của AM và EF

K đối xứng M qua AC

=>AC vuông góc MK tại trung điểm của MK

ta có: AC\(\perp\)MK

AC\(\perp\)MF

MK,MF có điểm chung là M

Do đó: M,K,F thẳng hàng

=>F là trung điểm của MK

Xét ΔABC có MF//AB

nên \(\dfrac{MF}{AB}=\dfrac{CM}{CB}=\dfrac{1}{2}\)

mà \(\dfrac{MF}{MK}=\dfrac{1}{2}\)(F là trung điểm của MK)

nên \(MK=AB\)

Xét tứ giác ABMK có

AB//MK

AB=MK

Do đó: ABMK là hình bình hành

=>AM cắt BK tại trung điểm của mỗi đường

mà O là trung điểm của AM

nên O là trung điểm của BK

=>B,O,K thẳng hàng

c: Xét ΔABC có

M là trung điểm của BC

MF//AB

Do đó: F là trung điểm của AC

Xét tứ giác AMCK có

F là trung điểm chung của AC và MK

=>AMCK là hình bình hành

Hình bình hành AMCK có AC\(\perp\)MK

nên AMCK là hình thoi

=>AK//CM và CA là phân giác của góc KCM

=>AK//CB

Xét tứ giác ABCK có AK//BC

nên ABCK là hình thang

Để ABCK là hình thang cân thì \(\widehat{KCM}=\widehat{ABC}\)

=>\(\widehat{ABC}=2\cdot\widehat{ACB}\)

mà \(\widehat{ABC}+\widehat{ACB}=90^0\)

nên \(\widehat{ABC}=\dfrac{2}{3}\cdot90^0=60^0;\widehat{ACB}=90^0-60^0=30^0\)

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên BC=2AM=10(cm)

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}\)

=>\(AC=10\cdot sin60=5\sqrt{3}\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}\cdot CA\cdot CB\cdot sinACB\)

\(=\dfrac{1}{2}\cdot5\sqrt{3}\cdot10\cdot sin30=5\cdot5\sqrt{3}\cdot\dfrac{1}{2}=\dfrac{25\sqrt{3}}{2}\left(cm^2\right)\)

10 tháng 2 2016

1)Xét tứ giác EMAF có 3 goc vg => AEMF la hcn => các điểm A,E,F,H cùng nằm trên một đường tròn 

2)

10 tháng 2 2016

dùng tứ giác nội tiếp là ra bạn à

 

có ai on ko nó chuyện vs mih chứ ai đng xem bóng đá thì cứ xem

18 tháng 12 2019

a, HS tự chứng minh

b, HS tự chứng minh

c, HS tự chứng minh

d, ∆MIH:∆MAB

=>  M H M B = I H A B = 2 E H 2 F B = E H F B

=> ∆MHE:∆MBF

=>  M F A ^ = M E K ^  (cùng bù với hai góc bằng nhau)

=> KMEF nội tiếp =>  M E F ^ = 90 0

30 tháng 12 2019

A B C D M E K

a ) Ta có : \(\widehat{A}=\widehat{D}=\widehat{E}=90^o\left(gt\right)\)

\(\Rightarrow ADME\) là hình chữ nhật ( tứ giác có ba góc vuông )

b ) Ta có : ME là đường trung bình của tam giác ABC 

\(\Rightarrow ME//AB\) và \(ME=\frac{1}{2}AB=\frac{1}{2}.6=3\left(cm\right)\)

\(\Rightarrow AD=ME=3\left(cm\right)\)( cạnh đối hình chữ nhật )
Lại có : \(\hept{\begin{cases}ME//AB\left(cmt\right)\\MB=MC\left(gt\right)\end{cases}}\)

\(\Rightarrow AE=CE=\frac{AC}{2}=\frac{8}{2}=4\left(cm\right)\)

ADME : hình chữ nhật 

\(\Rightarrow A_{ADME}=AD.AE=3.4=12\left(cm^2\right)\)

c ) Dễ thấy AC là đường trung trực của MK

\(\Rightarrow AM=AK\)và \(CM=CK\)

Mà AM = CM \(\left(=\frac{1}{2}BC\right)\) ( \(\Delta ABC\) vuông tại A )

\(\Rightarrow AM=AK=CM=CK\)

\(\Rightarrow AMCK\)là hình thoi ( tứ giác có 4 cạnh bằng nhau )

d ) Ta có : \(ME=\frac{1}{2}AB\)

\(\Rightarrow AB=2ME=MK\)

Hình thoi AMCK là hình vuông \(\Leftrightarrow AC=MK\)

\(\Leftrightarrow AC=AB\) ( vì AB = MK )

\(\Leftrightarrow\Delta ABC\)cân tại A

Mà \(\Delta ABC\) vuông tại A (gt)
Vậy \(\Delta ABC\)vuông cân tại A thì hình thoi AMCK là hình vuông