Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEMF có
\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)
=>AEMF là hình chữ nhật
b: Ta có: AEMFlà hình chữ nhật
=>AM cắt EF tại trung điểm của mỗi đường và AM=EF
=>O là trung điểm chung của AM và EF
K đối xứng M qua AC
=>AC vuông góc MK tại trung điểm của MK
ta có: AC\(\perp\)MK
AC\(\perp\)MF
MK,MF có điểm chung là M
Do đó: M,K,F thẳng hàng
=>F là trung điểm của MK
Xét ΔABC có MF//AB
nên \(\dfrac{MF}{AB}=\dfrac{CM}{CB}=\dfrac{1}{2}\)
mà \(\dfrac{MF}{MK}=\dfrac{1}{2}\)(F là trung điểm của MK)
nên \(MK=AB\)
Xét tứ giác ABMK có
AB//MK
AB=MK
Do đó: ABMK là hình bình hành
=>AM cắt BK tại trung điểm của mỗi đường
mà O là trung điểm của AM
nên O là trung điểm của BK
=>B,O,K thẳng hàng
c: Xét ΔABC có
M là trung điểm của BC
MF//AB
Do đó: F là trung điểm của AC
Xét tứ giác AMCK có
F là trung điểm chung của AC và MK
=>AMCK là hình bình hành
Hình bình hành AMCK có AC\(\perp\)MK
nên AMCK là hình thoi
=>AK//CM và CA là phân giác của góc KCM
=>AK//CB
Xét tứ giác ABCK có AK//BC
nên ABCK là hình thang
Để ABCK là hình thang cân thì \(\widehat{KCM}=\widehat{ABC}\)
=>\(\widehat{ABC}=2\cdot\widehat{ACB}\)
mà \(\widehat{ABC}+\widehat{ACB}=90^0\)
nên \(\widehat{ABC}=\dfrac{2}{3}\cdot90^0=60^0;\widehat{ACB}=90^0-60^0=30^0\)
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên BC=2AM=10(cm)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}\)
=>\(AC=10\cdot sin60=5\sqrt{3}\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}\cdot CA\cdot CB\cdot sinACB\)
\(=\dfrac{1}{2}\cdot5\sqrt{3}\cdot10\cdot sin30=5\cdot5\sqrt{3}\cdot\dfrac{1}{2}=\dfrac{25\sqrt{3}}{2}\left(cm^2\right)\)
1)Xét tứ giác EMAF có 3 goc vg => AEMF la hcn => các điểm A,E,F,H cùng nằm trên một đường tròn
2)
có ai on ko nó chuyện vs mih chứ ai đng xem bóng đá thì cứ xem
a, HS tự chứng minh
b, HS tự chứng minh
c, HS tự chứng minh
d, ∆MIH:∆MAB
=> M H M B = I H A B = 2 E H 2 F B = E H F B
=> ∆MHE:∆MBF
=> M F A ^ = M E K ^ (cùng bù với hai góc bằng nhau)
=> KMEF nội tiếp => M E F ^ = 90 0
a ) Ta có : \(\widehat{A}=\widehat{D}=\widehat{E}=90^o\left(gt\right)\)
\(\Rightarrow ADME\) là hình chữ nhật ( tứ giác có ba góc vuông )
b ) Ta có : ME là đường trung bình của tam giác ABC
\(\Rightarrow ME//AB\) và \(ME=\frac{1}{2}AB=\frac{1}{2}.6=3\left(cm\right)\)
\(\Rightarrow AD=ME=3\left(cm\right)\)( cạnh đối hình chữ nhật )
Lại có : \(\hept{\begin{cases}ME//AB\left(cmt\right)\\MB=MC\left(gt\right)\end{cases}}\)
\(\Rightarrow AE=CE=\frac{AC}{2}=\frac{8}{2}=4\left(cm\right)\)
ADME : hình chữ nhật
\(\Rightarrow A_{ADME}=AD.AE=3.4=12\left(cm^2\right)\)
c ) Dễ thấy AC là đường trung trực của MK
\(\Rightarrow AM=AK\)và \(CM=CK\)
Mà AM = CM \(\left(=\frac{1}{2}BC\right)\) ( \(\Delta ABC\) vuông tại A )
\(\Rightarrow AM=AK=CM=CK\)
\(\Rightarrow AMCK\)là hình thoi ( tứ giác có 4 cạnh bằng nhau )
d ) Ta có : \(ME=\frac{1}{2}AB\)
\(\Rightarrow AB=2ME=MK\)
Hình thoi AMCK là hình vuông \(\Leftrightarrow AC=MK\)
\(\Leftrightarrow AC=AB\) ( vì AB = MK )
\(\Leftrightarrow\Delta ABC\)cân tại A
Mà \(\Delta ABC\) vuông tại A (gt)
Vậy \(\Delta ABC\)vuông cân tại A thì hình thoi AMCK là hình vuông