K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2016

xét tam giác vuông ABN và tam giác vuông ACM

có: AB=AC (gt)

      AN=AM gt)

=>tam giác ABN=tam giác ACM (2 cạnh góc vuông)

=>BN=CM (2 cạnh tương ứng)       (1)

Gọi K là giao điểm của FM và CA

ta có : góc FMB + góc MBN=900

góc KMA + góc MAK = 900

Mà góc KMA = góc BMF (đối đỉnh)

=>góc MBN= góc MKA

xét tam giác vuông MAK và tam giác vuông NAB

có :AM =AN (gt)

góc MBN= góc MKA (cmt)

=> tam giác MAK = tam giác NAB (cạnh góc vuông góc nhọn)

=>AK =AB ( 2 cạnh tương ứng )    (2)

từ (1) và (2) =>AK =AC

ta có KM vuông góc với BN 

=>KF vuông góc với BN   

Mà AE vuông góc với BN (gt)    

=>KF //AE 

Ta có AK =AC (cmt)

=>AE là đường trung bình của tam giác KFC

=>È = EC

hay E là trung điểm của FC

 

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0
Bài 4. Cho tam giác ABC vuông cân tại A. Gọi D là trung điểm của BC. Trên đoạn AD lấy điểm E bất kì (E khác A và D). Qua E kẻ các đường vuông góc với AB, AC lần lượt tại M và N.                                                                                                                                                              a) Chứng minh tứ giác AMEN là hình vuông.                                                                  b) Chứng minh MN...
Đọc tiếp

Bài 4. Cho tam giác ABC vuông cân tại A. Gọi D là trung điểm của BC. Trên đoạn AD lấy điểm E bất kì (E khác A và D). Qua E kẻ các đường vuông góc với AB, AC lần lượt tại M và N.                                                                                                                                                              a) Chứng minh tứ giác AMEN là hình vuông.                                                                  b) Chứng minh MN // BC.                                                                                                         c) Qua M kẻ đường thẳng vuông góc với DN tại F. Chứng minh AFE 90 độ                           d) Chứng minh B, E, F thẳng hàng. 

1

a: ΔABC cân tại A

mà AD là đường trung tuyến

nên AD là tia phân giác của \(\widehat{BAC}\) và AD\(\perp\)BC

Xét tứ giác AMEN có

\(\widehat{AME}=\widehat{ANE}=\widehat{MAN}=90^0\)

Do đó: AMEN là hình chữ nhật

Hình chữ nhật AMEN có AE là phân giác của \(\widehat{MAN}\)

nên AMEN là hình vuông

b: AMEN là hình vuông

=>\(\widehat{AMN}=45^0\)

=>\(\widehat{AMN}=\widehat{ABC}\left(=45^0\right)\)

mà hai góc này là hai góc ở vị trí đồng vị

nên MN//BC