K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=3^2+4^2=25\)

hay BC=5(cm)

Vậy: BC=5cm

24 tháng 3 2021

 Xét ΔABD vuông tại A

       ΔEBD vuông tại E

CÓ : BD : CẠNH HUYỀN CHUNG

\(\widehat{ABD}=\widehat{EBD}\) (D LÀ TIA PHÂN GIÁC CỦA GÓC B)

⇒ΔABD= ΔEBD (CẠNH HUYỀN-CẠNH GÓC VUÔNG)

C)XÉT ΔDAI VUÔNG TẠI A

ΔDEC VUÔNG TẠI E 

CÓ: \(\widehat{A}=\widehat{E}\)(GT)

AD=CD(ΔABD= ΔEBD)

\(\widehat{ADI}=\widehat{EDC}\) (ĐỐI ĐỈNH)

⇒ΔDAI=ΔDEC (G-C-G)

⇒DI = CD 

⇒ΔIDC CÂN TẠI D 

a: BC=căn 4^2+3^2=5cm

AC<AB<BC

=>góc B<góc C<góc A

b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

c: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có

góc EBF chung

=>ΔBEF đồng dạng với ΔBAC

=>BF=BC

a: ΔABC cân tại A có AH là phân giác

nên H là trung điểm của BC

ΔABC cân tại A có AH là trung tuyến

nên AH vuông góc BC

b: BH=CH=12/2=6cm

AH=căn AB^2-AH^2=8cm

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

=>ΔADH=ΔAEH

=>AD=AE và HD=HE

=>ΔHDE cân tại H

d: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

15 tháng 6 2018

a, Xét ∆ ABC vuông tại A

➡️AB2 + AC2 = BC2 (Pitago)

➡️BC2 = 32 + 42

➡️BC2 = 25

➡️BC = 5 (cm) 

b, Xét ∆ ABD và ∆ EBD có:

Góc A = góc E = 90°

BD chung

Góc ABD = góc EBD (gt)

➡️∆ ABD = ∆ EBD (ch - gn)

➡️AB = EB (2 cạnh t/ư)

c, Ta có: 

BA + AK = BK

BE + EC = BC

mà AB = EB (cmt)

      AK = EC (gt)

➡️BK = BC

Xét ∆ BKI và ∆ BCI có:

BK = BC (cmt)

Góc ABD = góc EBD (gt)

BI chung

➡️∆ BKI = ∆ BCI (c.g.c)

➡️Góc BKI = góc BCI (2 góc t/ư)

d, Xét ∆ ABI và ∆ EBI có:

AB = EB (cmt) 

Góc ABD = góc EBD (gt)

BI chung

➡️∆ ABI = ∆ EBI (c.g.c)

➡️IA = IE (2 cạnh t/ư)

Hok tốt~

13 tháng 8 2017

bạn tự vẽ hình nha

a) Áp dụng định lý Pi-ta-go cho tam giác ABC vuông tại A

=> \(AB^2+AC^2=BC^2\)

            \(3^2+4^2=BC^2\)

             \(9+16=BC^2\)

=>               \(BC^2=25\)

=>\(BC=5\)

b) Xét tam giác ABD và tam giác EBD có:

\(\widehat{BAD}=\widehat{BED}\left(=90độ\right)\)

BD chung

\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)

=> tam giác ABD = tam giác EBD (ch-gn)

c)Vì tam giác ABD = tam giác EBD

=>\(BA=BE\left(1\right)\)

Theo đề bài ta có:

\(AK=EC\left(2\right)\)

Cộng 2 vế của (1),(2)

=>\(BA+AK=BE+EC\)

               \(BK=BE\)

=> tam giác BKC cân

=>\(\widehat{BKC}=\widehat{BCK}\)

d)Xét tam giác BAI và tam giác BEI có:

IB chung

\(\widehat{ABI}=\widehat{EBI}\left(gt\right)\)

\(AB=BE\)

=> tam giác BAI = tam giác BEI (c-g-c)

=>AI = EI

Cho tam giác ABC vuông tại A,AB = 3cm,AC = 4cm,Tính độ dài BC,Vẽ đường phân giác BD của tam giác ABC,Chứng minh tam giác ABD = tam giác EBD,Trên tia đối của tia AB lấy điểm K sao cho AK = EC,Chứng minh góc BKC = góc BCK,Tia BD cắt KC tại I,Chứng minh tam giác IAK = tam giác IEC,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

THAM KHẢO PHẦN a) VÀ b) NÈ

NHỚ TK MK NHA

a: BC=căn 3^2+4^2=5cm

b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔABD=ΔEBD

 

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=4^2+3^2=25\)

=>BC=5(cm)

b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó:ΔBAD=ΔBED

c: Sửa đề: ΔBHC đều

Ta có: ΔBAD=ΔBED

=>BA=BE

Xét ΔBEH vuông tại E và ΔBAC vuông tại A có

BE=BA

\(\widehat{EBH}\) chung

Do đó: ΔBEH=ΔBAC

=>BH=BC

Xét ΔBHC có BH=BC và \(\widehat{HBC}=60^0\)

nên ΔBHC đều

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=4^2+3^2=25\)

=>BC=5(cm)

b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó:ΔBAD=ΔBED

c: Sửa đề: ΔBHC đều

Ta có: ΔBAD=ΔBED

=>BA=BE

Xét ΔBEH vuông tại E và ΔBAC vuông tại A có

BE=BA

\(\widehat{EBH}\) chung

Do đó: ΔBEH=ΔBAC

=>BH=BC

Xét ΔBHC có BH=BC và \(\widehat{HBC}=60^0\)

nên ΔBHC đều