K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

ĐIểm $M$ là điểm nào thế bạn? 

 

8 tháng 1 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét tứ giác ADHE, ta có:

∠ A = 90 0  (gt)

∠ (ADH) =  90 0  (vì HD ⊥ AB)

∠ (AEH) =  90 0  (vì HE ⊥ AC)

Suy ra tứ giác ADHE là hình chữ nhật (vì có 3 góc vuông).

+ Xét ∆ ADH và  ∆ EHD có :

DH chung

AD = EH ( vì ADHE là hình chữ nhật)

∠ (ADN) =  ∠ (EHD) =  90 0

Suy ra:  ∆ ADH =  ∆ EHD (c.g.c)

⇒  ∠ A 1 =  ∠ (HED)

Lại có:  ∠ (HED) +  ∠ E 1 =  ∠ (HEA) =  90 0

Suy ra:  ∠ E 1 +  ∠ A 1 =  90 0

∠ A 1 = ∠ A 2 (chứng minh trên) ⇒  ∠ E 1 +  ∠ A 2 =  90 0

Gọi I là giao điểm của AM và DE.

Trong  ∆ AIE ta có:  ∠ (AIE) = 180o – ( ∠ E 1 +  ∠ A 2 ) = 180 0  -  90 0  =  90 0

 

Vậy AM ⊥ DE.

19 tháng 12 2017

không biết

20 tháng 12 2019

Hoang ơi! Bạn rảnh vừa phải thôi

10 tháng 11 2021

a, Vì \(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\) nên AEHD là hcn

Do đó AH=DE

b, Vì \(\widehat{HAB}=\widehat{MCA}\) (cùng phụ \(\widehat{CAH}\))

Mà \(\widehat{MCA}=\widehat{MAC}\) (do \(AM=CM=\dfrac{1}{2}BC\) theo tc trung tuyến ứng ch)

Vậy \(\widehat{HAB}=\widehat{MAC}\)

c, Gọi O là giao AM và DE

Vì AEHD là hcn nên \(\widehat{HAB}=\widehat{ADE}\Rightarrow\widehat{MAC}=\widehat{ADE}\)

Mà \(\widehat{ADE}+\widehat{AED}=90^0\left(\Delta AED\perp A\right)\) nên \(\widehat{MAC}+\widehat{ADE}=90^0\)

Xét tam giác AOE có \(\widehat{AOE}=180^0-\left(\widehat{MAC}+\widehat{ADE}\right)=90^0\)

Vậy AM⊥DE tại O

10 tháng 9 2018

Bạn tham khảo bài làm của bạn Nguyễn Võ Thảo Vy phía dưới nhé:

Câu hỏi của Nguyễn Desmond - Toán lớp 8 - Học toán với OnlineMath