K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2024

loading...  

a) Do AM là đường trung tuyến của ∆ABC (gt)

⇒ M là trung điểm của BC

⇒ MB = MC

∆AMB có:

MD là tia phân giác của ∠AMB (gt)

⇒ AD/BD = AM/BM

∆AMC có:

ME là tia phân giác của ∠AMC (gt)

⇒ AE/CE = AM/MC

Mà MB = MC (cmt)

⇒ AD/BD = AE/CE

∆ABC có:

AD/BD = AE/CE (cmt)

⇒ DE // BC (định lý Thales đảo)

b) Do DE // BC (cmt)

⇒ DO // BM và OE // MC

∆ABC có:

DE // BC (cmt)

⇒ AD/AB = AE/AC

∆ABM có:

DO // BM (cmt)

⇒ AD/AB = OD/BM

∆ACM có:

OE // MC (cmt)

⇒ AE/AC = OE/MC

Mà AD/AB = AE/AC (cmt)

⇒ OD/BM = OE/MC

Mà MB = MC (cmt)

⇒ OD = OE

⇒ O là trung điểm của DE

c) Do PQ // BC (gt)

DE // BC (cmt)

⇒ DE // PQ

∆MPQ có:

DE // PQ (cmt)

⇒ DE/PQ = ME/MQ (1)

Do DE // PQ (cmt)

⇒ OE // AQ

∆MAQ có:

OE // AQ (cmt)

⇒ ME/MQ = MO/MA (2)

Từ (1) và (2) ⇒ DE/PQ = MO/MA

1 tháng 3 2022

gfvfvfvfvfvfvfv555

a: Xét ΔMAB có MD là phân giác

nên AD/DB=AM/MB=AM/MC

Xét ΔAMC có ME là phân giác

nên AE/EC=AM/MC

=>AD/DB=AE/EC

=>ED//BC

b: Xét ΔABM có DI//BM

nên DI/BM=AI/AM

Xét ΔACM có EI//MC

nên EI/CM=AI/AM

=>DI/BM=EI/CM

=>DI=EI

 

6 tháng 8 2018

Hình bạn tự vẽ nha.

a, \(\Delta ABC\) có: AM là đường trung tuyến của \(\Delta ABC\)\(\Rightarrow BM=MC\)\(AI=\frac{2}{3}AM\)

 \(\Delta AMB\)có: MD là phân giác của \(\widehat{AMB}\)\(\Rightarrow\frac{AD}{DB}=\frac{AM}{MB}\)(tính chất đường phân giác trong tam giác) (1)

\(\Delta AMC\)có: ME là phân giác của \(\widehat{AMC}\)\(\Rightarrow\frac{AE}{EC}=\frac{AM}{MC}\)(tính chất đường phân giác trong tam giác) (2)

Từ (1), (2) và \(BM=MC\left(cmt\right)\Rightarrow\frac{AD}{DB}=\frac{AE}{EC}\)

\(\Delta ABC\)có: \(\frac{AD}{DB}=\frac{AE}{EC}\left(cmt\right)\Rightarrow DE//BC\)(định lý Ta-lét đảo)

b, \(\Delta ABM\)có: \(DI//BM\left(cmt\right)\Rightarrow\frac{DI}{BM}=\frac{AI}{AM}\)(hệ quả của định lý Ta-lét) (3)

\(\Delta AMC\)có: \(IE//MC\left(cmt\right)\Rightarrow\frac{IE}{CM}=\frac{AI}{AM}\)(hệ quả của định lý Ta-lét) (4)

Từ (3), (4) và \(BM=MC\left(cmt\right)\Rightarrow DI=IE\)

c, Ta có: \(\frac{IE}{CM}=\frac{AI}{AM}\left(cmt\right)\)\(\Leftrightarrow\frac{IE}{15}=\frac{\frac{2}{3}AM}{AM}\)\(\Leftrightarrow\frac{IE}{15}=\frac{\frac{2}{3}.10}{10}\)\(\Leftrightarrow\frac{IE}{15}=\frac{2}{3}\)\(\Leftrightarrow IE=10\left(cm\right)\)

9 tháng 7 2021

lời giải của bạn rất hay !

 

12 tháng 12 2018

27 tháng 2 2021

a) undefined

b) ta có MD là tia phân giác của \(\widehat{AMB}\), ME là tia phân giác của \(\widehat{AMC}\)

=> \(\widehat{AMD}=\widehat{DMB}=\dfrac{1}{2}\widehat{AMB}\) và \(\widehat{AME}=\widehat{EMC}=\dfrac{1}{2}\widehat{AMC}\)

=> \(\widehat{AME}+\widehat{AMD}=\dfrac{\widehat{AMC}+\widehat{AMB}}{2}=\dfrac{180^o}{2}=90^o\)

Ta có \(\widehat{EMC}=\widehat{MED}\)(do ED//BC)

mà \(\widehat{EMC}=\widehat{EMI}\)

=> \(\widehat{EMI}=\widehat{MEI}\)=> tam giác EIM cân tại I

=> EI=IM

cmtt : IM=ID

=> EI=IM=MD

=> IM = \(\dfrac{1}{2}\left(EI+ID\right)=\dfrac{1}{2}ED\)(ĐPCM)