Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ :
A B C D E
Ta có : \(BD\text{//}AE\)
Nên \(\widehat{EAB}=\widehat{ABD}\) (hai góc so le trong)
Lại có : \(\widehat{BEA}+\widehat{BAE}=\widehat{ABC}\) (tính chất góc ngoài của tam giác)
Mà \(\widehat{ABC}=\widehat{ABD}+\widehat{DBC}\) ( gt )
Nên : \(\widehat{BEA}+\widehat{BAE}=\widehat{ABD}+\widehat{DBC}\)
Mà : \(\widehat{EAB}=\widehat{ABD}\) (cmt)
\(\widehat{ABD}=\widehat{DBC}\) (gt)
Suy ra : \(\widehat{BEA}=\widehat{BAE}\) (đpcm)
A E B C D
Vì AE // BD
=> \(\widehat{BAE}=\widehat{ABD}\) (sole trong)
mà \(\widehat{ABD}=\widehat{DBC}\) ( BD là tia phân giác \(\widehat{B}\) )
=> \(\widehat{BAE}=\widehat{DBC}\) (1)
Vì AE // BD
=> \(\widehat{DBC}=\widehat{BEA}\) (đồng vị) (2)
(1); (2) => \(\widehat{BAE}=\widehat{BEA}\)
A B C D E Ta có :góc BAE = góc ABD(2 góc so le trong) góc BEA=DBC(2 góc đồng vị) góc ABD=DBC(BD là tia p/g góc ABC) => góc BEA=BAE(2 góc tương ứng)
A E B D C
\(AE//BD\Rightarrow\widehat{BAE}=\widehat{ABD}\)\((\)So le trong\()\). BD là phân giác \(\widehat{ABC}\Rightarrow\widehat{ABD}=\widehat{DBC}\Rightarrow\widehat{BAE}=\widehat{DBC}\)
Mà \(\widehat{DBC}=\widehat{BEA}\)\((\)đồng vị\()\)nên \(\widehat{BAE}=\widehat{BEA}\)
+ Vì AE//BD => ^BAE=^ABD (góc so le trong) (1) và ^BEA=^CBD (góc đồng vị) (2)
+ Mà ^ABD=^CBD (BD là phân giác) (3)
Từ (1); (2) và (3) => ^BAE=^BEA
Giả sử a//BC. Theo đề ta có:
\(\widehat{A_1}=\widehat{C_1}\) (hai góc so le trong) (1)
\(\widehat{A_1}=\dfrac{1}{2}\widehat{ABC}+\widehat{BAC}\) (vì BD là tia phân giác của \(\widehat{ABC}\)) (2)
\(\widehat{C_1}=\widehat{ABC}+\widehat{BAC}\) (vì \(\widehat{C_1}\) là góc ngoài của \(\widehat{C}\) ) (3)
Từ (1); (2) và (3) suy ra \(\dfrac{1}{2}\widehat{ABC}=\widehat{ABC}\), hay \(\dfrac{1}{2}=1\) (vô lí)
Suy ra a không song song với BC, hay a cắt đường thẳng BC