Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đg cao AD của ΔABC
+ IH là đg trung bình của ΔABD
\(\Rightarrow\left\{{}\begin{matrix}AD=2IH\Rightarrow AD^2=4IH^2\\BH=DH\end{matrix}\right.\)
+ ΔABC vuông tại A, đg cao AD
\(\Rightarrow\frac{1}{AD^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
\(\Rightarrow\frac{1}{4IH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
b) Mk sửa đề xíu : \(AC^2+BH^2=CH^2\)
+ ΔABC vuông tại A, đg cao AD
\(\Rightarrow AD^2=BD\cdot CD=2DH\cdot CD\)
+ \(AC^2+BH^2=CD^2+AD^2+DH^2\)
\(=CD^2+2\cdot DH\cdot CD+DH^2\)
\(=\left(CD+DH\right)^2=CH^2\)
App giải toán không cần nhập đề chỉ cần chụp ảnh cho cả nhà đây: https://www.facebook.com/watch/?v=485078328966618
a)Kẻ đường cao AD \(\left(D\in BC\right)\)
Xét tam giác ABD:
\(IB=IA;\)IH//AD(\(\perp BD\))
=> \(IH=\frac{1}{2}AD\)
Xét \(\Delta ABC\):
\(\frac{1}{AD^2}=\frac{1}{AC^2}+\frac{1}{AB^2}\)
\(\Rightarrow\frac{1}{4IH^2}=\frac{1}{AC^2}+\frac{1}{AB^2}\)
b) Xét \(\Delta ABC\):
\(AC^2=CD.CB\)
\(AC^2+BH^2=CH^2\)
\(\Leftrightarrow CD.CB+BH^2=\left(CD+BH\right)^2\)
\(\Leftrightarrow CD.CB+BH^2=CD^2+BH^2+2CD.BH\)
\(\Leftrightarrow CD^2+2CD.BH-CD.CB=0\)
\(\Leftrightarrow CD\left(CD+BH+BH-CB\right)=0\)
\(\Leftrightarrow CD\left(CD+BD-CD-BD\right)=0\)
\(\Leftrightarrow CD.0=0\left(LĐ\right)\)
Vậy \(AC^2+BH^2=CH^2\)(đpcm).
bạn tự vẽ hình nha
qua A ke AK vuong goc voi BC (K thuoc BC)
áp dụng hệ thức lượng trong tam giác ABC vuông tại A
\(\frac{1}{AC^2}+\frac{1}{AB^2}=\frac{1}{AK^2}\)(1)
dễ dàng cm đc IH là đường tb của tam giác AKB \(\Rightarrow IH=\frac{1}{2}AK\)
thay vao (1)ta co \(\frac{1}{4IH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\left(DPCM\right)\)