K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
giúp mình vs mình làm cần gấp
a) \(\Delta\)ABD cân ở B vì có BA = BD,BI là phân giác của góc ABD nên BI là đường trung trực của AD
\(\Delta\)ACE cân tại C vì có CA = CE,CI là tia phân giác của góc ACE nên CI là đường trung trực của AE
Vậy I là giao điểm của các đường trung trực của \(\Delta\)AED
b) Từ I kẻ \(IP\perp AB,IM\perp BC,IN\perp CA\)
thì IP = IM = IN = m
\(\Delta\)API và \(\Delta\)ANI là tam giác vuông cân nên AP = AN = PI = IN = m
\(\Delta\)IPB = \(\Delta\)IMP (cạnh huyền - góc nhọn) => BP = PM(hai cạnh tương ứng)
Mà BA = BD => MD = AP = m
\(\Delta\)INC = \(\Delta\)IMC (cạnh huyền - góc nhọn) => CM = CN(hai cạnh tương ứng)
Mà CE = CA => EM = AN = m
Vậy DE + DM + ME = 2m
c) \(\Delta\)IDE có \(IM=\frac{1}{2}DE\)nên ^DIE là góc vuông => ^DIE = 900
Theo tính chất góc ngoài của tam giác , ta suy ra :
^EAD = ^EAx + ^xAD = 1/2(^EIx + ^xID) = 1/2^EID = 1/2.900 = 450