\(k=\dfrac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2017

Giải:

Trên cạnh AB lấy điểm M sao cho AM= 2323AB.

Từ m kẻ đường song song với AB cắt AC tại N.

Ta có ∆AMN ∽ ∆ABC theo tỉ số đồng dạng K=2323

Dựng ∆A'B'C' = ∆AMN(theo trường hợp cạnh cạnh cạnh)

7 tháng 2 2018

Trên cạnh AB lấy điểm M sao cho AM= 232323AB.

Từ m kẻ đường song song với AB cắt AC tại N.

Ta có ∆AMN ∽ ∆ABC theo tỉ số đồng dạng K=232323

Dựng ∆A'B'C' = ∆AMN(theo trường hợp cạnh cạnh cạnh)

30 tháng 11 2019

Giải bài 26 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8

+ Dựng ΔADE Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔABC theo tỉ số 2/3

Trên AB lấy D, trên AC lấy E sao cho Giải bài 26 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 26 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8

Khi đó theo định lý Ta-let đảo ta suy ra DE // BC

⇒ ΔADE Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔABC theo tỉ số 2/3.

+ Dựng ΔA’B’C’ = ΔADE

Vẽ đoạn A’B’ = AD.

Dựng góc Giải bài 26 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8

Trên tia B’x lấy điểm C’ sao cho B’C’ = DE.

Nối C’A’ ta được ΔA’B’C’ = ΔADE (c.g.c)

Suy ra: ΔA’B’C’ đồng dạng với ΔADE theo tỉ số:

Giải bài 26 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8

22 tháng 4 2017

Lấy trung điểm M của AB, N là trung điểm của AC => MN là đường trung bình của tam giác ABC.

=> MN // BC.

=> ∆ AMN ∽ ∆ABC theo tỉ số K = 1/2.

Sửa đề: ΔABC\(\sim\)ΔA'B'C' theo tỉ số đồng dạng \(k_1=\dfrac{2}{3}\)

Vì ΔABC\(\sim\)ΔA'B'C' theo tỉ số đồng dạng \(k_1=\dfrac{2}{3}\)

mà ΔA'B'C' \(\sim\)ΔA''B''C'' theo tỉ số đồng dạng \(k_2=\dfrac{3}{4}\)

nên ΔABC\(\sim\)ΔA''B''C'' theo tỉ số đồng dạng \(k_1\cdot k_2=\dfrac{2}{3}\cdot\dfrac{3}{4}=\dfrac{2}{4}=\dfrac{1}{2}\)

hay ΔA"B"C"\(\sim\)ΔABC theo tỉ số đồng dạng k=2

4 tháng 2 2017

Cho a',b',c' là số đo cạnh của tam giác A'B'C'
       a,b,c là số đo cạnh của tam giác ABC
a) Theo đề bài ta có: \(\frac{a'}{a}=\frac{b'}{b}=\frac{c'}{c}=k=\frac{3}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\frac{a'}{a}=\frac{b'}{b}=\frac{c'}{c}=\frac{a'+b'+c'}{a+b+c}=\frac{P_{A'B'C'}}{P_{ABC}}=k=\frac{3}{5}\)
Vậy tỉ số chu vi hai tam giác đã cho là 3/5
b) Chu vi tam giác ABC là: \(P_{ABC}=40:\left(5-3\right)\cdot5=100\left(dm\right)\)
Chu vi tam giác A'B'C' là:  \(P_{A'B'C'}=P_{ABC}-40dm=100dm-40dm=60\left(dm\right)\)

19 tháng 4 2020

A B C A' B' C'

a, Gọi CV tam giác A'B'C' là P', ABC là P

\(\Delta A'B'C'~\Delta ABC\)theo tỉ số đồng dạng \(k=\frac{3}{5}\)

\(\Rightarrow\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}=\frac{3}{5}\)

Áp dụng t/c DTSBN , ta có  :

\(\frac{3}{5}=\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}\)

\(=\frac{A'B'+B'C'+C'A'}{AB+BC+CA}=\frac{P'}{P}\)

Vậy tỉ số chu vi tam giác A'B'C' và ABC là \(\frac{3}{5}\)

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a) Nếu \(\Delta A'B'C' = \Delta ABC\) thì tam giác \(A'B'C'\) đồng dạng với tam giác \(ABC\). Vì hai tam giác bằng nhau có các góc tương ứng bằng nhau và các cạnh tương ứng bằng nhau.

Khi đó, \(\left\{ \begin{array}{l}\widehat A = \widehat {A'};\widehat B = \widehat {B'};\widehat C = \widehat {C'}\\\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}} = 1\end{array} \right.\). Vậy \(\Delta A'B'C'\backsim\Delta ABC\) và tỉ số đồng dạng là 1.

b) Vì \(\Delta A'B'C'\backsim\Delta ABC\) theo tỉ số đồng dạng là \(k\) nên tỉ số đồng dạng là: \(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}} = k\).

Khi đó, \(\Delta ABC\backsim\Delta A'B'C'\) đồng dạng với tỉ số đồng dạng là: \(\frac{{AB}}{{A'B'}} = \frac{{AC}}{{A'C'}} = \frac{{BC}}{{B'C'}} = \frac{1}{k}\).

Vậy \(\Delta ABC\backsim\Delta A'B'C'\)theo tỉ số \(\frac{1}{k}\).