K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2019

K B C A D H 65 3

Xét tam giác AHD  vuông tại H

=> \(\sin\widehat{AHD}=\frac{AH}{DA}=\frac{3}{DA}\)

=> \(DA=\frac{3}{\sin65^o}\)

Kẻ BK vuông với DA tại K

=> Khoảng cách từ B đến AD =BK

Xét tứ giác ACBK: có

CB// AK ( CB// AD)

BK // AC ( cùng vuông với AD

=> ACBK là hình bình hành  

=> BK=AC

Xét tam giác ACD có:

 \(\tan\widehat{AHC}=\frac{AC}{DA}\Rightarrow AC=\tan\widehat{AHC}.AD=\tan65^o.\frac{3}{\sin65^o}=\frac{3}{\cos65^o}\)

=> KHoảng cách từ B đến AD bằng \(\frac{3}{\cos65^o}\)

Dễ dàng cm đc ADCB là hình bình hành:

=> AK=AD=BC=> DK=2. AD=\(\frac{6}{\sin65^o}\)

Xét tam giác KDB vuông tại K có DK=\(\frac{6}{\sin65^o}\), BK=\(\frac{3}{\cos65^o}\). Sử dụng định lí pitago để tìm DB

Diện tích tam giác ABD= 1/2  .  BK  .AD   . Thay vào tính đẻ tìm kết quả

17 tháng 6 2019

Ủa sao lúc nãy đề khác mà nhỉ ???

A D C H B x K

Kẻ BK vuông góc với AD

Xét \(\Delta ADC\left(\widehat{A}=90^o\right):\widehat{ADC}=65^o\Rightarrow\widehat{ACD}=25^o\)

Khi đó \(CA=\frac{AH}{sin\widehat{C}}=\frac{3}{sin25^o}\)

Dễ thấy BCAK là hình chữ nhật => \(BK=AC=\frac{3}{sin25^o}\)(cm)

                                                  và BC = AK

=> DA = AK (=BC)

=> DK = 2.DA

Ta có \(DA=\frac{AH}{sin\widehat{CDA}}=\frac{3}{sin25^o}\)(cm)

\(\Rightarrow DK=2DA=\frac{6}{sin25^o}\)(cm)

Áp dụng định lí Pytago vào tam giác BKD vuông tại K có

\(BK^2+KD^2=BD^2\)

\(\Leftrightarrow\left(\frac{3}{sin25^o}\right)^2+\left(\frac{6}{sin25^o}\right)^2=BD^2\)

\(\Leftrightarrow BD^2=\frac{45}{sin^225^o}\)

\(\Leftrightarrow BD=\frac{3\sqrt{5}}{sin25^o}\)(cm)

Ta có \(S_{ABD}=S_{BKD}-S_{BAK}\)

                    \(=\frac{BK.KD}{2}-\frac{AK.BK}{2}\)

                   \(=\frac{BK}{2}\left(KD-AK\right)\)

                   \(=\frac{BK.AD}{2}\)

                  \(=\frac{\frac{3}{sin25^o}.\frac{3}{sin25^o}}{2}\)

                 \(=\frac{18}{sin25^o}\left(cm^2\right)\)

Tính sai ở đâu tự sửa nhá :V

Chứng minh theo thứ tự sau đây

chứng minh tứ giác ABMH nội tiếp đường tròn

chứng minh DC⋅AB=CA⋅CM

Nếu MC = HD và MD = 5cm thì độ dài đoạn MC bằng bao nhiêu?

chứng minh AD vuông góc với BM

bạn tự vẽ hình nha
a)Xét tứ giác ABEF có
góc ABE=90 độ( góc nội tiếp chắn nửa dường tròn)
và góc AFE=90 độ (EF vuông góc AD tại F)
=> góc ABE + góc AFE =180 độ
=> tứ giác ABEF nội tiếp dường tròn đường kính AE
b)Ta có : góc CBD=góc CAD ( góc nội tiếp cùng chắn cung CD của (O))
và góc CAD =góc FBD (góc nội tiếp chắn cung EF của đường tròn ngoại tiếp tứ giác ABEF)
=>góc CBD=góc FBD (=góc CAD)
=>BD là tia phân giác của góc CBF
c)Xét tứ giác CEFD có:
góc DCA=90 độ (góc nội tiếp chắn nửa đường tròn)
và góc EFD=90 độ (EF vuông góc AD tại F)
=> góc DCA+góc EFD=180 độ
=> tứ giác CEFD nội tiếp dường tròn đường kính ED)
Ta có tam giác ABE vuông tại B có dường trung tuyến BM (M là trung diểm của AE)
=>BM=1/2. AE= AM=ME =>tam giác ABM cân tại M => góc ABM= góc BAM

mà góc ABM +góc MBF+góc FBE=90 độ
và góc FBE=góc CAD (cmt)
=>góc MBF+ góc CAD+ góc BAM =90 độ
mà góc ADB+ góc CAD+góc BAM =90 độ(góc BAD=góc BAM+goc1CAD)
=>góc MBF=góc ADB
mà góc ADB = góc FCM ( góc nội tiếp cùng chắn cung EF của đường tròn ngoại tiếp tứ giác CEFD)
=>góc MBF= góc FCM (=góc ADB)
=>tứ giác BMFC nội tiếp đường tròn

#B

6 tháng 4 2020

a) Ta có: ^ABD = 90o ( góc nội tiếp chắn cung AD ( nửa đường tròn ) )

và ^AFE = 90o ( EF vuông AD)

=> ^ABD + ^AFE = 180o

=> ABEF nội tiếp 

Chứng minh tương tự với DCEF

b) ABCD nội tiếp => ^ACB = ^ADB ( cùng chắn cung AB ) 

DCEF nội tiếp => ^ECF = ^EDF ( cùng chắn cung EF )  => ^ACF = ^ADB 

=> ^ACB = ^ACF 

=> CA là phân giác ^BCF