K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADE và ΔCGE có 

\(\widehat{AED}=\widehat{CEG}\)

\(\widehat{EAD}=\widehat{ECG}\)

Do đó: ΔADE\(\sim\)ΔCGE

b: Ta có: ΔADE\(\sim\)ΔCGE

nên AE/EC=DE/GE

mà AE/EC=AD/DB

nên AD/DB=DE/GE

Các bạn không cần vẽ hình đâu chỉ cần giải ra thôi1) Cho hình bình hành ABCD E là điểm trên AB. DE kéo dài cắt đường thẳng BC tại FChứng minh tam giác ADE đồng dạng với tam giác BFE2) Cho tam giác ABC vuông góc tại A với AC bằng 3 cm BC bằng 5cm Vẽ đường cao AKChứng minh rằng tam giác ABC đồng dạng với tam giác KBA và AB2 = BK.BC3) Cho tam giác ABC có AB = 15cm AC = 20cm BC = 25 cm. Trên cạnh AB lấy điểm...
Đọc tiếp

Các bạn không cần vẽ hình đâu chỉ cần giải ra thôi

1) Cho hình bình hành ABCD E là điểm trên AB. DE kéo dài cắt đường thẳng BC tại F

Chứng minh tam giác ADE đồng dạng với tam giác BFE

2) Cho tam giác ABC vuông góc tại A với AC bằng 3 cm BC bằng 5cm Vẽ đường cao AK

Chứng minh rằng tam giác ABC đồng dạng với tam giác KBA và AB= BK.BC

3) Cho tam giác ABC có AB = 15cm AC = 20cm BC = 25 cm. Trên cạnh AB lấy điểm E sao cho AE 18cm trên cạnh AC lấy F sao cho AF = 6 cm

So sánh AE/AC;AF/AB

4) Cho tam giác ABC vuông tại A đường cao AH cắt phân giác BD tại I

Chứng minh rằng a,IA.BH = IH.BA

                                b,Tam giác ABC đồng dạng với tam giác HBA

5) cho tam giác AOB có AB bằng 18 cm OA = 12 cm OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD bằng 3 cm. Qua D kẻ đường thẳng song song với AB cắt AO ở C. Gọi F là giao điểm của AD và BC

Tính độ dài OC;CD

6) Cho tam giác nhọn ABC có AB bằng 12 cm AC bằng 15 cm. Trên các cạnh AB và AC lấy các điểm D và E sao cho AD = 4 cm,AE = 5cm

Chứng minh rằng DE // BC, Từ đó suy ra tam giác ADE đồng dạng với tam giác ABC?

7) Cho tam giác ABC vuông tại A D nằm giữa A và C. Kẻ đường thẳng D vuông góc với BC tại E và cắt AB tại F 

Chứng minh tam giác ADF đồng dạng với tam giác EDC

 

1
13 tháng 2 2018

tính đến hết tết à

a: Xét ΔABC có DE//BC

nên DE/BC=AD/AB

=>DE/10=3/5

=>DE=6cm

b: Xét ΔADE và ΔCGE có

góc AED=góc CEG

góc EAD=góc ECG

=>ΔADE đồng dạng với ΔCGE

c: Xét tứ giác DBCG có

DG//BC

DB//CG

=>DBCG là hình bình hành

=>DB=CG

a: Xét ΔABC có DE//BC

nên AD/AB=DE/BC

=>DE/10=3/5

hay DE=6(cm)

b: Xét ΔADE và ΔCGE có 

\(\widehat{ADE}=\widehat{CGE}\)

\(\widehat{AED}=\widehat{CEG}\)

Do đó: ΔADE\(\sim\)ΔCGE

Suy ra: AD/CG=AE/CE

hay \(AD\cdot CE=AE\cdot CG\)

a: Xét ΔABC vuông tại A và ΔDEC vuông tại D có

góc C chung

=>ΔABC đồng dạng với ΔDEC
b: góc EDB+góc EAB=180 độ

=>EABD nội tiếp

góc DEB=góc DAB

góc DBE=góc DAC

=>góc DEB=góc DBE

=>DB=DE