Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có DE//BC nên: \(\frac{DA}{DB}=\frac{AE}{CE}\left(1\right)\)
Lại có AB//CG nên: \(\frac{DE}{EG}=\frac{AE}{CE}\left(2\right)\)
Từ (1) và (2) có: ĐPCM
b/Có DE//BC nên
\(\frac{HC}{HE}=\frac{BH}{HG}\left(3\right)\)
Có AB//CG nên
\(\frac{HA}{HC}=\frac{BH}{HG}\left(4\right)\)
Từ (3) và (4) có: \(\frac{HC}{HE}=\frac{HA}{HC}\RightarrowĐPCM\)
c/Ta có: \(\frac{HI}{AB}=\frac{CI}{BC}\left(5\right)\)
Và \(\frac{HI}{CG}=\frac{BI}{BC}\left(6\right)\)
Lấy (5) cộng (6) đước: \(\frac{HI}{AB}+\frac{HI}{CG}=1\Rightarrow\frac{1}{AB}+\frac{1}{CG}=\frac{1}{HI}\)
a: Xét ΔEDA và ΔEGC có
\(\widehat{EDA}=\widehat{EGC}\)(hai góc so le trong, AD//CG)
\(\widehat{DEA}=\widehat{GEC}\)(hai góc đối đỉnh)
Do đó: ΔEDA~ΔEGC
=>\(\dfrac{ED}{EG}=\dfrac{EA}{EC}\left(1\right)\)
Xét ΔABC có DE//BC
nên \(\dfrac{EA}{EC}=\dfrac{AD}{DB}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{ED}{EG}=\dfrac{AD}{DB}\)
=>\(ED\cdot DB=EG\cdot AD\)
b: Xét ΔHEG và ΔHCB có
\(\widehat{HEG}=\widehat{HCB}\)(hai góc so le trong, EG//BC)
\(\widehat{EHG}=\widehat{CHB}\)(hai góc đối đỉnh)
Do đó: ΔHEG~ΔHCB
=>\(\dfrac{HE}{HC}=\dfrac{EG}{CB}\)(3)
Xét ΔHGC và ΔHBA có
\(\widehat{HGC}=\widehat{HBA}\)(hai góc so le trong, AB//CG)
\(\widehat{GHC}=\widehat{BHA}\)(hai góc đối đỉnh)
Do đó: ΔHGC~ΔHBA
=>\(\dfrac{HC}{HA}=\dfrac{GC}{BA}\left(4\right)\)
Xét tứ giác BDGC có
BD//GC
DG//BC
Do đó:BDGC là hình bình hành
=>\(\widehat{DGC}=\widehat{DBC}\)
Xét ΔGEC và ΔBCA có
\(\widehat{GEC}=\widehat{BCA}\)(hai góc so le trong, EG//BC)
\(\widehat{EGC}=\widehat{CBA}\)(cmt)
Do đó: ΔGEC~ΔBCA
=>\(\dfrac{EG}{BC}=\dfrac{GC}{BA}\left(5\right)\)
Từ (3),(4),(5) suy ra \(\dfrac{HC}{HA}=\dfrac{HE}{HC}\)
=>\(HC^2=HE\cdot HA\)
Điện thoại đang sd là j z sao mà chụp nét z???