Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC và AH là phân giác của góc BAC
=>góc BAH=góc CAH
b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
Do đó: ΔADH=ΔAEH
=>AD=AE
=>ΔADE cân tại A
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a) Xét t/giác ABH vuông tại H , ta có: AB2 = AH2 + BH2 (Pi - ta - go)
=> AB2 = 122 + 52 = 169 => AB = 13 (cm)
Ta có: HC + BH = BC => HC = BC - BH = 14 - 5 = 9 (cm)
Xét t/giác AHC vuông tại H, có: AC2 = HC2 + AH2 (Pi - ta - go)
=> AC2 = 92 + 122 = 225 => AC = 15 (cm)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AB^2=12^2+5^2=169\)
hay AB=13(cm)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=14-5=9(cm)
Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AC^2=12^2+9^2=225\)
hay AC=15(cm)
Vậy: AB=13cm; AC=15cm
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
hay HB=HC
Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
hay \(\widehat{BAH}=\widehat{CAH}\)
b: BH=CH=BC/2=4(cm)
nên AH=3(cm)
c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có
AH chung
\(\widehat{EAH}=\widehat{DAH}\)
DO đó: ΔAEH=ΔADH
Suy ra: HE=HD
hay ΔHDE cân tại H
Vì AHC vuông
=> AC^2 = AH^2 + HC^2 ( định lý pytago đảo )
=> AC^2 = 144 + 25
=> AC^2 = 169
=> AC = 13
Áp dụng định lí Py-ta-go vào tam giác ABH ta được:
\(AB^2=AH^2+BH^2\)
Mà AB=20cm; AH=12cm
\(\Rightarrow20^2=12^2+BH^2\)
\(\Rightarrow400=144+BH^2\)
\(\Rightarrow BH^2=400-144\)
\(\Rightarrow BH^2=256\)
\(\Rightarrow BH=16\)(do BH >0) (cm)
Có BH+HC=BC
Mà BH=16cm;HC=5cm
=> BC=16+5=21(cm)
Vậy BC=21cm
k cho mình nha
Hình vẽ:
Xét \(\Delta ACH\left(\widehat{H}=90^0\right)\)có:
\(AC^2=AH^2+HC^2\)( định lý py-ta-go )
\(\Rightarrow5^2=4^2+HC^2\)
\(\Rightarrow HC^2=5^2-4^2\)
\(\Rightarrow HC^2=25-16\)
\(\Rightarrow HC^2=9\)
\(\Rightarrow HC=\sqrt{9}\)
\(\Rightarrow HC=3cm\)
Ta có: \(BH+HC=9cm\)
mà \(HC=3cm\left(cmt\right)\)
\(\Rightarrow BH=9-3=6cm\)
Xét \(\Delta AHB\left(\widehat{H}=90^0\right)\)có:
\(AB^2=AH^2+BH^2\)( định lý py-ta-go )
\(\Rightarrow AB^2=4^2+6^2\)
\(\Rightarrow AB^2=16+36\)
\(\Rightarrow AB^2=52\)
\(\Rightarrow AB=\sqrt{52}cm\)
Vậy độ dài cạnh AB là \(\sqrt{52}cm\)