\(\widehat{B}=\widehat{E}\); 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2020

a) Xét tgiac ABC và ADE có:

+ góc BAC = DAE = 90 độ (góc kề bù)

+ AB = AE 

+ AC = AE

=> Tgiac ABC = ADE (c-g-c)

=> DE = BC (2 cạnh t/ứng)

=> đpcm

b) Gọi O là giao điểm của DE và BC

Do tgiac ABC = ADE (cmt) nên góc AED (OEB) = góc ACB

=> góc OEB + góc B = góc B + ACB

Do tgiac ABC vuông tại A nên góc B + ACB = 90 độ (tổng 3 góc trong 1 tgiac là 180 độ)

=> góc OEB + B = 90 độ

Xét tgiac OBE có góc OEB + B = 90 độ => góc EOB = 90 độ

=> DE  vuông góc BC (đpcm)

c) 4. góc B = 5. góc C => góc B = 5/4. góc C

Mà tổng góc B + góc C = 90 độ

=> (tổng tỉ) => góc C = 40 độ

=> góc AED = 40 độ

19 tháng 5 2017

a) Đúng

b) Đúng

c) Sai

5 tháng 2 2021

a) Đúng

b) Đúng

c) Sai

Bài làm

a) Xét ∆ABC vuông tại B có:

^BAC + ^C = 90°

Hay ^BAC + 30° = 90°

=> ^BAC = 60° 

Vì AD là phân giác của góc BAC.

=> ^DAC = 60°/2 = 30°

Xét tam giác ADC có:

^DAC + ^ACD + ^ADC = 180°

Hay 30° + 30° + ^ADC = 180°

=> ^ADC = 180° - 30° - 30°

=> ^ADC = 120°

b) Xét tam giác ABD và tam giác AED có:

AB = AE ( gt )

^BAD = ^EAD ( Do AD phân giác )

Cạnh AD chung.

=> ∆ABD = ∆AED ( c.g.c )

c) Vì ∆ABD = ∆AED ( cmt )

=> ^ABD = ^AED = 90°

=> DE vuông góc với AC tại E                (1)

Ta có: ^DAC = ^DCA = 30°

=> ∆DAC cân tại D.

=> AD = DC

Xét tam giác DEA và tam giác DEC có:

Góc vuông: ^DEA = ^DEC ( = 90° )

Cạnh huyền AD = DC ( cmt )

Góc nhọn: ^DAC = ^DCA ( cmt )

=> ∆DEA = ∆DEC ( g.c.g )

=> AE = EC 

=> E là trung điểm của AC.                       (2)

Từ (1) và (2) => DE là trung trực của AC ( đpcm )