K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2020

b1 : 

DE // AB

=> góc ABC  = góc DEC (đồng vị)

 góc ABC = góc ACB do tam giác ABC cân tại A (gt)

=> góc DEC = góc ACB 

=> tam giác DEC cân tại D (dh)

b2:

a, tam giác ABC => góc A + góc B  + góc C = 180 (đl)

góc A = 80; góc B  = 50

=> góc C = 50

=> góc B = góc C

=> tam giác ABC cân tại A (dh)

b, DE // BC

=> góc EDA = góc ABC (slt)

     góc DEA = góc ECB (dlt)

góc ABC = góc ACB (Câu a)

=> góc EDA = góc DEA 

=> tam giác DEA cân tại A (dh)

11 tháng 10 2019

A A A B B B C C C D D D M M M N N N Vì MD//AC,mà \(\widehat{NAD},\widehat{MDA}\)là 2 góc ở vị trí so le trong nên suy ra \(\widehat{NAD}=\widehat{MDA}\left(1\right)\)

Lập luận tương tự thì ta cũng có \(\widehat{NDA}=\widehat{MAD}\left(2\right)\)

Mà theo giả thiết thì AD là tia phân giác góc BAC nên \(\widehat{MAD}=\widehat{NAC}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\widehat{NAD}=\widehat{MAD}=\widehat{NDA}=\widehat{MDA}\left(4\right)\)

Suy ra \(180^0-\widehat{MAD}-\widehat{MDA}=180^0-\widehat{NAD}-\widehat{NDA}\Rightarrow\widehat{AMD}=\widehat{DNA}\)

Vậy \(\widehat{AMD}=\widehat{DNA}\)

b/ Từ (4) suy ra DA là tia phân giác của góc MDN

Vậy DA là tia phân giác của góc MDN

P/s: Cách của mình dài dòng lắm, chưa chắc gì đã chặt chẽ nữa

5 tháng 12 2015

a) Xét tam giác EAD và tam giác BAC ta có

+) AD = AB( gt)

+) AE = AC(gt)

+) A1=A2 ( Hai góc đối đỉnh)

=> tam giác EAD = tam giác BAC (c.g.c)

=> C1=E1( hai góc  tương ứng)  mà C1 và E1 là hai góc so le trong

=> DE// BC

E D B C A 1 2 1 1

Kẻ OF//BC(F thuộc AC)

=>OF//DE//BC

DE//BC

=>góc DEA=góc ACB

=>góc DEO=1/2*góc ACB

ED//OF
=>góc DEA=góc CFD và góc DEO=góc EOF

=>góc EOF=1/2*góc ACB

=>góc DEO=góc EOF

OF//BC

=>góc FOB=góc OBC=1/2góc ABC

góc BOE=góc BOF+góc EOF

=1/2(góc ABC+góc ACB)

28 tháng 7 2016

trả lời đi T.T

Kẻ OF//BC(F thuộc AC)

=>OF//DE//BC

DE//BC

=>góc DEA=góc ACB

=>góc DEO=1/2*góc ACB

ED//OF
=>góc DEA=góc CFD và góc DEO=góc EOF

=>góc EOF=1/2*góc ACB

=>góc DEO=góc EOF

OF//BC

=>góc FOB=góc OBC=1/2góc ABC

góc BOE=góc BOF+góc EOF

=1/2(góc ABC+góc ACB)