K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2018

Vẽ MH ^ BC, BK ^ AC.

SAMNB = 3SMNC

Þ SABC = 4SMNC

Ta có: S A B C S B M C = A C M C = 3 2  

S B M C S M N C = B C N C = 6 N C ⇒ S A B C S M N C = 9 N C  

Mà SABC = 4SCMN Þ NC = 2,25

7 tháng 5 2015

Đề có chỗ nhầm lẫn: Từ M vẽ tia Mx vuông góc với AC và cắt AC tại N

A C B 9 15 M N 4

a) MN ⊥ AC; AB ⊥ AC => MN // AB

=> Tam giác CMN đồng dạng với ABC

b) MN/AB = CM/CB => MN/9 = 4/15 => MN = 9 . 4 /15

c) AC2 = BC2 - AB2 = 152 - 92 = 144

=> AC = 12

Diện tích ABC = 1/2 x 12 x 9

Vì CMN đồng dạng với ABC theo tỉ số đồng dạng là 4/15

=> Diện tích MNC = (4/15)2 x (diện tích ABC)

Bạn tự thay số rồi tính nhé

23 tháng 1 2016

=......................................................................................................................................................may nhi olm

² Bài 3. Cho AM là trung tuyến của D ABC, đường thẳng d song song với BC, cắt AB, AC và AM theo thứ tự là: E, F, N . Trên tia đối của tia FB lấy điểm K, đường thẳng KN cắt AB tại P, đường thẳng KM cắt AC tại Q. Chứng minh rằng: PQ // BC .Bài 6. Cho đoạn thẳng AB song song với đường thẳng d. Tìm quỹ tích những điểm M (điểm M và đường thẳng d thuộc hai nửa mặt phẳng đối nhau có bờ là...
Đọc tiếp

² Bài 3. Cho AM là trung tuyến của D ABC, đường thẳng d song song với BC, cắt AB, AC và AM theo thứ tự là: E, F, N . Trên tia đối của tia FB lấy điểm K, đường thẳng KN cắt AB tại P, đường thẳng KM cắt AC tại Q. Chứng minh rằng: PQ // BC .

Bài 6. Cho đoạn thẳng AB song song với đường thẳng d. Tìm quỹ tích những điểm M (điểm M và đường thẳng d thuộc hai nửa mặt phẳng đối nhau có bờ là đường thẳng AB) sao cho các tia MA, MB tạo với đường thẳng d một tam giác có diện tích nhỏ nhất.

Bài 8: Cho tam giác ABC, trên cạnh BC, CA và AB lần lượt lấy các điểm M, N và P sao cho: a) Chứng minh rằng: AM, BN, CP là độ dài ba cạnh của một tam giác mà ta kí hiệu là \(\Delta\)(k). b) Tìm k để diện tích tam giác \(\Delta\)(k) nhỏ nhất.

0