Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BFED có
FE//BD
DE//BF
Do đó: BFED là hình bình hành
Suy ra: DE=BF
mà AE=BF
nên ED=EA
hay ΔAED cân tại E
a, Vì : ED//AB → ED//FB
EF//BC → EF//BD
Nên FEDB là hình bình hành → FB = ED
Mà AE = FB (gt) →AE = ED → Δ EAD là tam giác cân và cân tại E
b, Vì Δ EAD là tam giác cân tại E
nên ta có góc ADE = góc DAE(1)
VÌ DE // AB nên ta có góc ADE =góc BAD (2)
Từ (1) và (2) ta có góc DAE =góc BAD
hay AD là phân giác của góc A A B C D E F
a) Chứng minh BDEF là hình bình hành Þ ED= BF = AE Þ DAED cân ở E.
b) Ta có B A D ^ = D A C ^ (vì cùng bằng A D E ^ ) Þ AD là phân giác Â
a: Xét tứ giác AEMF có
AE//MF
AF//ME
góc EAF=90 độ
Do đó: AEMF là hình chữ nhật
b: \(S_{ABC}=\dfrac{1}{2}\cdot6\cdot4=3\cdot4=12\left(cm^2\right)\)
A B C M E D
Xét tứ giác AEMD có : MD // AE (vì MD // AB) và ME // AD (vì ME // AC)
=> AEMD là hình bình hành. Theo tính chất của hình bình hánh ta suy ra được ME = AD và MD = AE (đpcm).
a: Xét tứ giác AEMF có
AE//MF
ME//AF
Do đó: AEMF là hình bình hành
mà \(\widehat{FAE}=90^0\)
nên AEMF là hình chữ nhật
a: Xét tứ giác AEMF có
góc AEM=góc AFM=góc FAE=90 độ
nên AEMF là hình chữ nhật
b: \(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot4\cdot6=2\cdot6=12\left(cm^2\right)\)