Cho tam giác ABC. Từ điểm D trên cạnh BC vẽ D E / /...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2018

a) Ta có DE // AB nên D E C ^ = A ^  (cặp góc đồng vị); DF // AC nên B F D ^ = A ^  (cặp góc đồng vị).

Mặt khác B F D ^ = F D E ^  (so le trong của DE // AB)

Suy ra A ^ = D E C ^ = B F D ^ = F D E ^ .

b) Ta có D 2 ^ = B ^  (cặp góc đồng vị của DE // AB); D 1 ^ = C ^  (cặp góc so le trong của DF // AC);

Do đó D 1 ^ + D 2 ^ = B ^ + C ^ = 110 ° . Suy ra F D E ^ = 180 ° − 110 ° = 70 ° .

Vậy A ^ = 70 °  (vì A ^ = F D E ^ ).

18 tháng 12 2019

a) Vì ^ABC = 50\(^o\)và BE là phân giác ^ABC 

=> ^ABE = ^ABC : 2=  50\(^o\):2 = 25\(^o\)

Xét \(\Delta\)ABE có: ^BEC là góc ngoài tại đỉnh B

=> ^BEC = ^ABE + ^BAE = 25\(^o\)+90\(^o\)=115\(^o\)

b) Xét \(\Delta\)ABE và \(\Delta\)DBE có:

^ABE = ^DBE ( BE là phân giác ^ABC)

BE chung

BA = BE 

=>  \(\Delta\)ABE = \(\Delta\)DBE

=> ^BDE = ^BAE = 90\(^o\)

=> DE vuông BC

c) Sai đề rồi nhé em kiểm tra lại đề bài.

20 tháng 12 2019

c) Xét \(\Delta\)BFH và \(\Delta\)BCH có:

^BHF = ^BHC ( = 90\(^o\)

BH chung 

^FBH = ^CBH ( BE là phân giác ^B)

=> \(\Delta\)BFH = \(\Delta\)BCH ( g.c.g)

=> CB = FB  (1)

Xét \(\Delta\)BFD  và  \(\Delta\)BCA có:

BF = BC ( theo 1)

^B chung 

BA = BD ( giả thiết )

=>  \(\Delta\)BFD = \(\Delta\)BCA ( c.g.c)

=> ^BDF = ^BAC  = 90 \(^o\)

=> FD vuông BC  mà ED vuông BC

=> F; E; D thẳng hàng

13 tháng 12 2016

Ta có hình vẽ:

B A C E F K D

a/ Trong tam giác ABC có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

hay 900 + góc B + 400 = 1800

=> góc ABC = 500

Ta có: \(\widehat{ABD}\)=\(\widehat{DBC}\)=\(\frac{1}{2}\widehat{ABC}\)= \(\frac{1}{2}\)500 = 250

Vậy góc ABD = 250

b/ Xét tam giác ABD và tam giác EBD có:

\(\widehat{ABD}=\widehat{DBE}\) (GT)

BD: chung

AB = EB (GT)

Vậy tam giác ABD = tam giác EBD (c.g.c)

Ta có: tam giác ABD = tam giác EBD

=> \(\widehat{A}=\widehat{E}=90^0\) hay DE \(\perp\)BC (đpcm)

c/ Xét tam giác ABC và tam giác EBF có:

\(\widehat{B}\): góc chung

BA = BE (GT)

góc A = góc E = 900 (đã chứng minh trên)

=> tam giác ABC = tam giác EBF

(trường hợp cạnh huyền góc nhọn)

d/ Xét tam giác BFK và tam giác BCK có:

BK: cạnh chung

\(\widehat{FBK}=\widehat{CBK}\) (GT)

BF = BC (tam giác ABC = tam giác EBF)

=> tam giác BFK = tam giác BCK (c.g.c)

=> \(\widehat{BKF}\)=\(\widehat{BKC}\) (2 góc tương ứng)

Mà góc BKC = 900 (do CK\(\perp\)BD) => góc BKF = 900

Ta có: \(\widehat{FKC}=\widehat{BKF}+\widehat{BKC}=90^0+90^0=180^0\)

hay K,F,C thẳng hàng

15 tháng 12 2016

d) ta có tam giác ABC = tam giác EBF ( theo c)

=> BC = BF ( 2 cạnh tương ứng)

Xét tam giác BKC và tam giác BKF có:

BC = BF ( gt )

BK chung

KBK = FBC ( gt)

=> tam giác BKC = tam giác BKF ( c.g.c )

=> BKC = BKF ( 2 góc tương ứng)

=> BKC + BKF = 180°( 2 góc kề bù)

=> BKC = BKF = 180° : 2 = 90° = FKC

vậy 3 điểm F,K,C thẳng hàng

13 tháng 12 2017

hjufyhijug 

19 tháng 11 2022

Bài 1:

loading...