K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2019

A E F B I M C

Ta có F,M lần lượt là trung điểm  của BC và BE nên FM là đường trung bình của tg BEC

=> FM//EC

Có I là trung điểm của AM và FM//EC nên E là trung điểm của FA

Vì vậy BF = FE = EA hay \(BF=\frac{1}{3}AB\)

\(\Rightarrow S_{\Delta BFC}=\frac{1}{3}S_{\Delta ABC}=12cm^2\)

25 tháng 6 2020

thiếu đề bài nhé bạn

28 tháng 6 2020

thiếu đề

6 tháng 9 2020

câu a: xét 2 tam giác MAB vs MCD :

ta có : AM = DM (gt)

góc BMA = góc DMC ( đối đỉnh)

MB = MC (gt)

=> tam giác MAB = tam giác MDC (c.g.c)

câu b: ta có : AC > AB

AB = CD ( 2 cạnh tương ứng)

=> AC > CD ( tính chất bắt cầu )

câu c: xét 2 tam giác ABK va ADK

ta có : AB = DC ( như câu a)

KA = KC ( gt )

=> tam giác ABK = tam giác CDK ( 2 cạnh góc vuông )

câu d : xét 2 tam giác NAK và ICK

ta có : AK = KC ( gt )

góc NAK = góc ICK (Vì :

*1: có góc A = góc C ( vuông )

*2:góc BAN = DCI ( như câu a)

từ *1 và *2 => góc A - góc BAN = góc NAK và góc C - góc DCI = góc ICK

=> góc NAK = góc ICK )

góc DKC = góc BKA ( như câu c )

=> tam giác NAK = tam giác ICK ( g.c.g )

=> NK = NI ( 2 cạnh tương ứng )

=> tam giác NKI cân tại K ( vì có NK = IK) .

Hy vọng nó đúng vì tui ko chắc ăn tam giác ACD có vuông hay ko . chúc bạn hc giỏi

6 tháng 9 2020

d,CM AM<1/2(AB+AC).Điều này không đúng nếu tam giác ABC không là tam giác vuông.

1 tháng 4 2016
  • A B C G D M 1 2 A B C D T E 2 1
24 tháng 2 2018

Mình làm câu đầu tiên nhé :)

a) Xét tam giác ABM và tam giác DMC có :

BM = CM ( gt )

\(\widehat{AMB}=\widehat{DMC}\)

AM = DM ( gt )

\(\Rightarrow\)\(\Delta AMB=\Delta DMC\left(c-g-c\right)\)

\(\Rightarrow\)\(\widehat{BAM}=\widehat{DCM}\)( 2 góc tương ứng bằng nhau )

Mà 2 góc này ở vị trí so le trong nên suy ra AB // CD 

9 tháng 1 2020

Bài 2:


40 A D B C

Vì \(\Delta ABC\)cân tại A mà \(\widehat{A}=40^o\)nên:

\(\Rightarrow\widehat{B}=\widehat{C}=\frac{180^o-40^o}{2}=\frac{140^o}{2}=70^o\)

Do CD là tia p/giác của ^ACB nên: ^BCD= 1/2. ^ACB= 1/2.700=350

Vì ^ADC là góc ngoài của \(\Delta BCD\)tại đỉnh D nên:

\(\Rightarrow\widehat{ADC}=\widehat{B}+\widehat{BCD}=70^o+35^0=115^o\)

22 tháng 8 2018

Xét \(\Delta BMI\)và \(\Delta CME\)có:

           \(BM=CM\left(gt\right)\)

           \(\widehat{BMI}=\widehat{CME}\) (đối đỉnh)

           \(MI=ME\left(gt\right)\)

Do đó: \(\Delta BMI=\Delta CME\left(c.g.c\right)\)

Trong 2 tam giác bằng nhau, bạn phải viết đỉnh tương ứng thì mới đúng.

Chúc bạn học tốt.