Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
câu a: xét 2 tam giác MAB vs MCD :
ta có : AM = DM (gt)
góc BMA = góc DMC ( đối đỉnh)
MB = MC (gt)
=> tam giác MAB = tam giác MDC (c.g.c)
câu b: ta có : AC > AB
AB = CD ( 2 cạnh tương ứng)
=> AC > CD ( tính chất bắt cầu )
câu c: xét 2 tam giác ABK va ADK
ta có : AB = DC ( như câu a)
KA = KC ( gt )
=> tam giác ABK = tam giác CDK ( 2 cạnh góc vuông )
câu d : xét 2 tam giác NAK và ICK
ta có : AK = KC ( gt )
góc NAK = góc ICK (Vì :
*1: có góc A = góc C ( vuông )
*2:góc BAN = DCI ( như câu a)
từ *1 và *2 => góc A - góc BAN = góc NAK và góc C - góc DCI = góc ICK
=> góc NAK = góc ICK )
góc DKC = góc BKA ( như câu c )
=> tam giác NAK = tam giác ICK ( g.c.g )
=> NK = NI ( 2 cạnh tương ứng )
=> tam giác NKI cân tại K ( vì có NK = IK) .
Hy vọng nó đúng vì tui ko chắc ăn tam giác ACD có vuông hay ko . chúc bạn hc giỏi
d,CM AM<1/2(AB+AC).Điều này không đúng nếu tam giác ABC không là tam giác vuông.
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình làm câu đầu tiên nhé :)
a) Xét tam giác ABM và tam giác DMC có :
BM = CM ( gt )
\(\widehat{AMB}=\widehat{DMC}\)
AM = DM ( gt )
\(\Rightarrow\)\(\Delta AMB=\Delta DMC\left(c-g-c\right)\)
\(\Rightarrow\)\(\widehat{BAM}=\widehat{DCM}\)( 2 góc tương ứng bằng nhau )
Mà 2 góc này ở vị trí so le trong nên suy ra AB // CD
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
40 A D B C
Vì \(\Delta ABC\)cân tại A mà \(\widehat{A}=40^o\)nên:
\(\Rightarrow\widehat{B}=\widehat{C}=\frac{180^o-40^o}{2}=\frac{140^o}{2}=70^o\)
Do CD là tia p/giác của ^ACB nên: ^BCD= 1/2. ^ACB= 1/2.700=350
Vì ^ADC là góc ngoài của \(\Delta BCD\)tại đỉnh D nên:
\(\Rightarrow\widehat{ADC}=\widehat{B}+\widehat{BCD}=70^o+35^0=115^o\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét \(\Delta BMI\)và \(\Delta CME\)có:
\(BM=CM\left(gt\right)\)
\(\widehat{BMI}=\widehat{CME}\) (đối đỉnh)
\(MI=ME\left(gt\right)\)
Do đó: \(\Delta BMI=\Delta CME\left(c.g.c\right)\)
Trong 2 tam giác bằng nhau, bạn phải viết đỉnh tương ứng thì mới đúng.
Chúc bạn học tốt.
A E F B I M C
Ta có F,M lần lượt là trung điểm của BC và BE nên FM là đường trung bình của tg BEC
=> FM//EC
Có I là trung điểm của AM và FM//EC nên E là trung điểm của FA
Vì vậy BF = FE = EA hay \(BF=\frac{1}{3}AB\)
\(\Rightarrow S_{\Delta BFC}=\frac{1}{3}S_{\Delta ABC}=12cm^2\)