Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ - AB = AC ( gt )
ABM = ACM vì { - AM chung
(c.c.c) - MB = MC ( m là trung điểm )
b/ AB // DC k phải AB // BC
T/g ABM = t/g DCM ( c.g.c)
AM = DM ( gt )
Góc AMB = DMC ( đđ )
BM = CM ( gt )
Có ABM = DCM ( t/g ABM = t/g DCM )
Lại ở vị trí slt
=> AB // DC
c/
AB = AC ( gt )
=> ABC cân tại A
Có AM là trung tuyến ( m là trug điểm )
=> AM là đường cao ABC
=> AM vuông góc BC
a) Xét tam giác CMA và tam giác BMD có :
\(\hept{\begin{cases}MC=MB\\AM=MD\\\widehat{AMC}=\widehat{BMD}\end{cases}\Rightarrow\Delta CMA=\Delta BMD}\)
=> \(\hept{\begin{cases}AC=BD\\\widehat{BDM}=\widehat{ACM}\end{cases}\Rightarrow BD//AC}\)
=> ACBD là hình bình hành
=> \(\hept{\begin{cases}AB=CD\\AB//CD\end{cases}}\)=> đpcm
b) Xét tam giác ABC và tam giác CDA có :
\(\hept{\begin{cases}AB=CD\\\widehat{CAB}=\widehat{ACD}=90^∗\end{cases}\Rightarrow\Delta ABC=\Delta CDA}\)( Lưu ý : Vì không có dấu kí hiệu " độ " nên em dùng tạm dấu *)
Chung AC
=> AD=BC
=> \(AM=\frac{1}{2}.AD=\frac{1}{2}.BC\)=> đpcm
c) Xét tam giác ABC có :
M là trung điểm BC
A là trung điểm CE
Từ 2 điều trên =>AM là đường trung bình => AM//BE ( đpcm )
e) AM //BE => AD // BE
Tam giác CBE có BA vừa là đường cac ,vừa là trung tuyến => tam giác CBE cân ở B
=> \(\hept{\begin{cases}BC=BE\\AD=BC\end{cases}\Rightarrow AD=EB}\)
Mà AD//BE => ABDE là hình bình hành => AB cắt DE ở trung điểm
=> E,O , D thẳng hàng => đpcm
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Xét ΔMBA và ΔMCD có
MB=MC
\(\widehat{AMB}=\widehat{DMC}\)
MA=MD
Do đó: ΔMBA=ΔMCD
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB=DC
Giải
a)Vì BAIˆ=90o+ABCˆ(vì là góc ngoài của tam giác ABH)
Và EBCˆ=90o+ABCˆ.
=>BAIˆ=EBCˆ
Xét tam giác ABI và tam giác BEC có:
EB=AB(gt)
AI=BC(gt)
BAIˆ=EBCˆ(c/m trên)
=> Tam giác ABI bằng tam giác BEC(c.g.c)
b)Gọi giao điểm của IH và EC là K,giao điểm của IB và EC là O
Vì tam giác ABI=Tam giác BEC(c/m trên)=>IB=EC(hai cạnh tương ứng)
Và BIHˆ=ECBˆ(hai góc tương ứng)(1)
Và HKCˆ=EKIˆ(đđ)(2)
Mà HKCˆ+KCHˆ=90o(xét trong tam giác vuông KHC vuông tại H)(3)
=>Từ (1),(2) và (3)=>BIHˆ+EKIˆ=90o
Xét trong tam giác OIK có hai góc BIH và góc EIK=>IOCˆ=90o
hay IO vuông góc với EC hay IB vuông góc với EC.
c)Ta cũng dễ dàng c/m tương tự rằng IC vuông góc với BF theo c/m tương tự như câu b.
Vậy 3 đường thẳng IH,BF,CE đều là 3 đường cao của tam giác IBC,Vậy 3 đường này đồng quy theo tính chất.