Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEMF có
AE//MF
ME//AF
Do đó: AEMF là hình bình hành
mà \(\widehat{FAE}=90^0\)
nên AEMF là hình chữ nhật
a: Xét tứ giác AEMF co
AE//MF
ME//FA
Do đó: AEMF là hình bình hành
b: Để AEMF là hình chữ nhật thì góc BAC=90 độ
c: Khi ΔBAC vuông cân tại A thì AB=AC và góc BAC=90 độ
=>AEMF là hình vuông
a: Xét tứ giác AEMF có
AE//MF
ME//AF
Do đó: AEMF là hình bình hành
b) Xét tam giác ABC có:
+ M là trung điểm BC (do AM là trung tuyến).
+ ME // AC (gt).
=> E là trung điểm AB (Định lý đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm của cạnh thứ ba).
Ta có: I là điểm đối xứng với M qua E (gt) => E là trung điểm MI.
Xét tứ giác AIBM có:
+ E là trung điểm MI (gt).
+ E là trung điểm AB (gt).
=> Tứ giác AIBM là hình bình hành (dhnb).
Theo giả thiết: Tứ giác AIBM là hình vuông.
=> AM = BM và AM vuông góc BM (Tính chất hình vuông).
Xét tam giác ABC có:
AM là đường trung tuyến (gt).
AM là đường cao (AM vuông góc BC; M thuộc BC).
=> Tam giác ABC cân tại A.
Xét tam giác ABC cân tại A có:
\(BM=\dfrac{1}{2}BC\) (M là trung điểm của BC).
Mà BM = AM (cmt).
=> \(AM=\dfrac{1}{2}BC\).
=> Tam giác ABC vuông cân tại A.
Vậy tam giác ABC vuông cân tại A thì tứ giác AIBM là hình vuông.
https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem
Bạn xem tại link này nhé
Học tốt!!!!!!
a)Vì E là trung điểm AC suy ra AE=EC
Vì K đối xứng M qua E suy ra EM=EK
từ 2đk trên suy ra từ giác AKCM là hình bình hành
b)từ ý a suy ra AK//BC và AK=MC mà MC=BM suy ra BM=AK
tứ giác AKMB có AK//BM và AK=BM suy ra AKMB là hình bình hành
ta có AD=DM nên DB=DK hay B,D,K thẳng hàng
a) Xét tứ giác AEMF có: \(\left\{{}\begin{matrix}\widehat{EAF}=90^o\\\widehat{AFM}=90^o\\\widehat{MEA}=90^o\end{matrix}\right.\)
=> Tứ giác AEMF là hình chữ nhật.
b) Ta có: AM là đường trung tuyến của \(\Delta ABC\)
=> AM=BM=CM
Xét \(\Delta BME\) và \(\Delta AME\):
BM=AM(cmt)
EM: cạnh chung
\(\widehat{BEM}=\widehat{AEM}=90^o\)
=> \(\Delta BME=\Delta AME\left(ch-cgv\right)\)
=> BE=AE (2 cạnh tương ứng)
Xét tứ giác AMBH có E là giao điểm 2 đường chéo AB và MH; 2 đường chéo này cắt nhau tại trung điểm của mỗi đường
=> Tứ giác AMBH là hình bình hành (1)
Lại có BM=AM(2)
Từ (1) và (2) suy ra AMBH là hình thoi.
P/s: Đây là mình làm theo cách HS Trung bình cũng hiểu được, đáng nhé ra phải dùng cái tính chất đường cao trong tam giác cân rồi, nhưng thôi...:vv