K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2020

A B C M E F

Bài làm:

a) Ta có: \(\widehat{EMF}=\widehat{EMA}+\widehat{FMA}\)

\(=\frac{1}{2}\widehat{AMB}+\frac{1}{2}\widehat{AMC}\)

\(=\frac{1}{2}\left(\widehat{AMB}+\widehat{AMC}\right)=\frac{1}{2}.180^0=90^0\)

b) Vì ME là phân giác của tam giác AMB => \(\frac{AE}{EB}=\frac{AM}{MB}=\frac{AM}{MC}\)

Vì MF là phân giác của tam giác AMC => \(\frac{FA}{FC}=\frac{AM}{MC}=\frac{AM}{MB}\)

=> \(\frac{AE}{EB}=\frac{FA}{FC}\) => EF // AB

c) BC = 20cm => BM = 10cm

Ta có: \(\frac{AE}{EB}=\frac{AM}{MB}=\frac{10}{10}=1\Rightarrow AE=EB\Rightarrow AE=\frac{1}{2}AB\)

\(\Rightarrow\frac{AE}{AB}=\frac{1}{2}\)

Mà EF // BC => \(\frac{FE}{BC}=\frac{AE}{AB}=\frac{1}{2}\Rightarrow EF=\frac{1}{2}.BC=\frac{1}{2}.20=10\left(cm\right)\)

Vậy EF = 10(cm)

Xet ΔMAB có MD là phân giác

nên AD/DB=AM/MB=AM/MC

Xét ΔMAC có ME là phân giác

nên AE/EC=AM/MC

=>AD/DB=AE/EC

=>DE//BC

=>ΔADE đồng dạng với ΔABC

20 tháng 8 2016

A B C E F M

Vì ME là phân giác của \(\widehat{AMB}\) nên \(\frac{EA}{EB}=\frac{MA}{MB}\)

MF là phân giác của \(\widehat{AMC}\) nên \(\frac{FA}{FB}=\frac{MA}{MC}\)

Mà \(MB=MC\) nên \(\frac{EA}{EB}=\frac{FA}{FC}\). Theo định lí Ta - lét đảo \(\Rightarrow EF\)// \(BC\)

\(\Rightarrow\widehat{FEM}=\widehat{EMB}\)

     \(\widehat{EFM}=\widehat{FMC}\)

Mà \(\widehat{FEM}=\widehat{EFM}\) ( Do \(\Delta MEF\) cân tại M )

\(\Rightarrow\widehat{EMB}=\widehat{FMC}\Rightarrow\frac{\widehat{AMB}}{2}=\frac{\widehat{AMC}}{2}\Rightarrow\widehat{AMB}=\widehat{AMC}=90\)

=> AM vuông góc với BC hay AM là đường cao .lại có AM là trung tuyến nên tam giác ABC cân tại A

20 tháng 8 2016

A E B M F C

22 tháng 3 2022

giúp mình dc ko :<<<<

22 tháng 3 2022

Đợi mình chút

 

HQ
Hà Quang Minh
Giáo viên
13 tháng 9 2023

Vì \(MD\) là tia phân giác của góc \(\widehat {AMB}\) nên \(\frac{{AD}}{{DB}} = \frac{{AM}}{{BM}}\) (1)

Vì \(ME\) là tia phân giác của góc \(\widehat {AMC}\) nên \(\frac{{AE}}{{EC}} = \frac{{AM}}{{MC}}\)(2);

Mà \(M\) là trung điểm của \(BC\) nên \(BM = MC\) (3)

Từ (1); (2); (3) \( \Rightarrow \frac{{AD}}{{BD}} = \frac{{AE}}{{EC}}\)

Xét tam giác \(ABC\) có: \(\frac{{AD}}{{BD}} = \frac{{AE}}{{EC}}\)

Do đó, \(DE//BC\)(Định lí Thales đảo).

Xét ΔMAB có MD là phân giác

nên AD/DB=AM/MB=AM/MC

Xét ΔAMC có ME là phân giác

nên AE/EC=AM/MC

=>AD/DB=AE/EC

=>DE//BC

5 tháng 4 2020

A B C M D E

a) 

Xét tam giác AMB có: MD là pg góc AMB

=>  \(\frac{AD}{BD}=\frac{AM}{BM}\)        ( 1 )

Xét tam giác AMC có: MD là pg góc AMC

=> \(\frac{AE}{CE}=\frac{AM}{CM}\)

Mà BM = CM

=> \(\frac{AE}{CE}=\frac{AM}{BM}\)     ( 2 )

* Từ ( 1 ) , ( 2 ) => \(\frac{AD}{BD}=\frac{AE}{CE}\)

=> DE // BC. ( định lí Ta-lét đảo )

Vậy DE // BC.

b)

Ta có: BM = CM = \(\frac{1}{2}\)BC = \(\frac{1}{2}\)x 6 = 3 (cm)

Ta có: \(\frac{AD}{BD}=\frac{AM}{BM}\)

=> \(\frac{AD}{AM}=\frac{BD}{BM}=\frac{AD+BD}{AM+BM}=\frac{AB}{AM+BM}\)

=> \(\frac{AD}{5}=\frac{AB}{5+3}=\frac{AB}{8}\)

=> \(\frac{AD}{AB}=\frac{5}{8}\)

Xét tam giác ABC có: DE // BC

=> \(\frac{DE}{BC}=\frac{AD}{AB}\) ( hệ quả định lí Ta-lét )

=> \(\frac{DE}{6}=\frac{5}{8}\)

=> DE = 3,75 ( cm ).

Vậy DE = 3,75 cm.