Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có AH/AB=AK/AC
nên HK//BC
b: Xet ΔABC có HK//BC
nên AH/AB=HK/BC
=>HK/18=6/9=2/3
=>HK=12(cm)
c: Xét ΔABM có HI//BM
nên HI/BM=AI/AM
Xét ΔAMC có IK//MC
nên IK/MC=AI/AM
=>HI/BM=IK/MC
mà BM=CM
nên HI=IK
=>I là trung điểm của HK
a) Xét tam giác ABC có:
M là trung điểm của BC( AM là đường trung tuyến tam giác ABC)
N là trung điểm của AC(gt)
=> MN là đường trung bình của tam giác ABC
=> MN//AB
Mà AB⊥AC(tam giác ABC vuông tại A)
=> MN⊥AC(từ vuông góc đến song song)
b) Xét tam giác AMC có:
MN là đường cao ứng với cạnh AC(MN⊥AC)
MN là đường trung tuyến ứng với cạnh AC(N là trung điểm AC)
=> Tam giác AMC cân tại M
c) Ta có: Tam giác AMC cân tại M
=> AM=MC
Mà BM=MC=\(\dfrac{1}{2}BC\)( M là trung điểm BC)
=> \(AM=\dfrac{1}{2}BC\)
\(\Rightarrow2AM=BC\)
a) Xét ∆ABM có DE//AM => \(\dfrac{AE}{AB}=\dfrac{DM}{BM}\)
Mà M là trung điểm của BC => BM=CM
=> \(\dfrac{AE}{AB}=\dfrac{DM}{CM}\)(1)
Xét ∆FDC có AM//FD => \(\dfrac{DM}{MC}=\dfrac{FA}{AC}\)(2)
Từ (1) và (2) => \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\) <=> AE.AC=AF.AB
b) Ta có: \(\dfrac{DF}{AM}=\dfrac{DC}{CM}\)
Mà \(\dfrac{DE}{AM}=\dfrac{BD}{BM}=\dfrac{BD}{CM}\)
=> \(\dfrac{DE+DF}{AM}=\dfrac{BD+DC}{MC}=\dfrac{BC}{MC}=2\)
=> \(DE+DF=2AM\)
a: Sửa đề; AB=8cm
AB^2+AC^2=BC^2
=>ΔABC vuông tại A
b: Xét tứ giác AMCD có
AM//CD
AD//CM
AM=CM
=>AMCD là hình thoi
c: XétΔHAI vuông tại H và ΔABC vuông tại A có
góc HAI=góc ABC
=>ΔHAI đồng dạng với ΔABC
bài này là tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông.
Để chứng minh tính chất này, bạn cần dùng kiến thức hình chữ nhật.
Hoặc dùng kiến thức đường trung bình cũng được, như trong bài toán này.
Hình bạn tự vẽ nhe.
Giai.
a) Xét t/g CAB có MN là đường trung bình nên MN//BA, mà BA vuông góc AC(vì t/g ABC vuông)
nên MN v/g với AC.
b) Xét hai tg vuông MNA(N=90) và MNC (N=90) có
NA=NC(giả thiết)
MN là cạnh chung
Do đó: tg MNA= MNC (2 cạnh góc vuông)
suy ra MA=MC
mà MC=MB(vì M là trung điểm BC)
Vậy AM=BC:2 hay 2AM=BC