K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2016

 a) dựa vào tính chất đường phân giác" BM/BD=AM/AD" và "MC/EC=AM/AE" 
bạn rút 2 vế ra được..."BM/AM=BD/AD=EC/AE" ( mà MC=BM) 
dựa theo tính chất talet đảo => DE//BC 

tk nha bạn

thank you bạn

(^_^)

21 tháng 4 2020

Ai  kb mik  vs

9 tháng 12 2019

a) DM là đường phân giác của ΔABM nên theo tính chất đường phân giác của tam giác ta có:

Tương tự EM là đường phân giác ΔACM nên:

Mà MB = MC nên từ (1) và (2) suy ra

28 tháng 4 2020

a, Vì MD là phân giác AMB \(\Rightarrow\frac{AD}{AM}=\frac{BD}{BM}\)\(\Rightarrow\frac{AD}{BD}=\frac{AM}{BM}\)\(\Rightarrow\frac{AD}{BD}=\frac{AM}{CM}\)(MB = MC)

Vì ME là phân giác AMC \(\Rightarrow\frac{AE}{AM}=\frac{EC}{MC}\)\(\Rightarrow\frac{AE}{EC}=\frac{AM}{MC}\)

\(\Rightarrow\frac{AE}{EC}=\frac{AD}{BD}\) => DE // BC (định lý Thales đảo)

b, Vì DE // BE (cmt) \(\Rightarrow\frac{DO}{BM}=\frac{AO}{OM}\)(Hệ quả định lý Thales)  và \(\frac{OE}{MC}=\frac{OA}{OM}\) (Hệ quả định lý Thales)

\(\Rightarrow\frac{DO}{BM}=\frac{OE}{MC}\) 

Mà BM = MC (gt)

=> DO = OE

23 tháng 4 2020

a) Vì AM là trung tuyến của \(\Delta ABC\Rightarrow BM=CM;M\in BC\)

Xét \(\Delta ABM\)có MD là p/g \(\widehat{BMA}\Rightarrow\frac{AD}{BD}=\frac{AM}{BM}\)hay \(\frac{AD}{BD}=\frac{AM}{CM}\left(1\right)\)

Xét \(\Delta ACM\)có ME là p/g \(\widehat{CMA}\Rightarrow\frac{AE}{CE}=\frac{AM}{CM}\left(2\right)\)

Từ (1)(2)\(\Rightarrow\frac{AD}{BD}=\frac{AE}{CE}\Rightarrow DE//BC\)(đ/ lí Ta-lét đảo)

b) Có \(DE//BC\)\(O\in DE,M\in BC\Rightarrow OD//BM;OE//CM\)

Xét \(\Delta ABM\)có \(OD//BM\Rightarrow\frac{OD}{BM}=\frac{OA}{AM}\left(3\right)\)

Xét \(\Delta ACM\)có \(OE//CM\Rightarrow\frac{OE}{CM}=\frac{OA}{AM}\left(4\right)\)

Từ (3)(4) \(\Rightarrow\frac{OD}{BM}=\frac{OE}{CM}\).Mà BM=CM \(\Rightarrow OD=OE\)

a: Xét ΔMAB có MD là phan giác

nên MA/MB=AD/DB=MA/MC

Xét ΔMAC có ME là phân giác

nên MA/MC=AE/EC

=>AD/DB=AE/EC

=>DE//BC

b: Xét ΔAMB có OD//MB

nên OD/MB=AO/AM

Xét ΔAMC có OE//MC

nên OE/MC=AO/AM

=>OD/MB=OE/MC

mà MB=MC

nên OD=OE

22 tháng 1 2016

Dễ thấy tam giác MBI đồng dạng với tam giác MAB ( góc MBI = góc MAB; góc BMI chung)

suy ra MB/MA=MI/MB suy ra MB2= MA.MI

suy ra MC2= MA.MI ( vì MB=MC) do đó MC/MA=MI/MC 

Dẫn đến tam giác MCI đồng dạng với tam giác MAC suy ra đpcm

14 tháng 1 2016

làm đi ai làm dc vs đúng mình tích hết cho

16 tháng 12 2017

1a) A=D=E=90 độ

=>AEHD là hcn 

=>AH=DE

b)Xét tam giác DBH vuông tại D có:

DI là đường trung tuyến ứng với cạnh huyền BH

=>DI=BH/2=IH

=>tam giác IDH cân tại I

=>góc IDH=góc IHD (1)

Gọi O là gđ 2 đường chéo AH và DE

=>OD=OA=OE=OH (tự c/m)

=> tam giác DOH cân tại O

=> góc ODH=góc OHD(2)

từ (1) và (2) => góc ODH+góc IDH=90 độ(EHD+DHI=90 độ)

=>IDvuông góc DE(3)

Cmtt ta được: KEvuông góc DE(4)

Từ (3)và (4) => DI//KE.

16 tháng 12 2017

2a) Ta có góc HAB+góc HAC=90 độ (1)

Xét tam giác ABC vuông tại A có 

AM là đg trung tuyến ứng vs cạnh huyền BC

=>AM=MC

=>tam giác AMC cân

=>góc MAC=góc ACM

Lại có: góc HAC+góc ACH=90 độ(2)

Từ (1) và (2) => góc BAH=góc ACM

Mà góc AMC=góc MAC(cmt)

=>ABH=MAC(3)

b)A=D=E=90 độ

=>AFHE là hcn

Gọi O là gđ EF và AM

OA=OF(tự cm đi nha)

=>tam giác OAF cân

=>OAF=OFA(4)

Ta có : OAF+MCA=90 độ(5)

Từ (3)(4) và (5)

=>MAC+OFA=90 độ

Hay AM vuông góc EF

k giùm mình nha.