Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\cot B=\dfrac{BH}{AH}=\cot50\approx0,8\\ \cot C=\dfrac{CH}{AH}=\cot30=\sqrt{3}\approx1,7\\ \Rightarrow\dfrac{BH+CH}{AH}\approx0,8+1,7=2,5\\ \Rightarrow\dfrac{BC}{AH}=\dfrac{15}{AH}\approx2,5\Rightarrow AH\approx6\left(cm\right)\)
A C B H
Ta có: HB + HC = BC
=>HC = 60 - HB (cm)
Xét △AHC vuông tại H có: \(tan\widehat{C}=\dfrac{AH}{HC}\Rightarrow tan30^0=\dfrac{AH}{HC}\Rightarrow HC=\dfrac{AH}{tan30^0}\left(cm\right)\) (1)
Xét △AHB vuông tại H có: \(tan\widehat{B}=\dfrac{AH}{HB}\Rightarrow tan20^0=\dfrac{AH}{60-HC}\Rightarrow tan20^0\left(60-HC\right)=AH\) (2)
Thay (1) vào (2) ta được: \(\Rightarrow tan20^0\left(60-\dfrac{AH}{tan30^0}\right)=AH \)
\(\Rightarrow tan20^0\left(\dfrac{60.tan30^0}{tan30^0}-\dfrac{AH}{tan30^0}\right)=AH\)
\(\Rightarrow tan20^0\left(\dfrac{60.tan30^0-AH}{tan30^0}\right)=AH\)
\(\Rightarrow tan20^0\left(60.tan30^0-AH\right)=AH.tan30^0\)
\(\Rightarrow tan20^0\left(20\sqrt{3}-AH\right)=AH.tan30^0\)
\(\Rightarrow tan20^0.20\sqrt{3}-AH.tan20^0=AH.tan30^0\)
\(\Rightarrow tan20^0.20\sqrt{3}=AH.\left(tan30^0+tan20^0\right)\)
\(\Rightarrow AH=\dfrac{tan20^0.20\sqrt{3}}{tan30^0+tan20^0}\approx13,3943\left(cm\right)\)
Diện tích của △ABC là: \(S_{ABC}=\dfrac{AH.BC}{2}=\dfrac{13,3943.60}{2}\approx401,83\left(cm^2\right)\)
Vậy...........
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{3}{5}\)
nên \(\widehat{B}\simeq36^052'\)
Ta có: ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{C}=90^0-36^052'=53^08'\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot7,5=4,5\cdot6=27\)
=>AH=27/7,5=3,6(cm)
Xét ΔABC vuông tại A có
\(AC=AB\cdot\tan25^0\)
\(\Leftrightarrow AC=8\cdot\tan25^0\)
hay \(AC\simeq3,730\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=8^2+3.73^2=77,9129\)
hay \(BC\simeq8,827\left(cm\right)\)
\(AB=\cos B\cdot BC=\dfrac{1}{2}\cdot20=10\left(cm\right)\\ AC=\sin B\cdot BC=\dfrac{\sqrt{3}}{2}\cdot20=10\sqrt{3}\approx17,3205\left(cm\right)\\ \widehat{C}=90^0-\widehat{B}=30^0\)
hình tự vẽ nha
xét (0) có 2 \(\widehat{CAB}\)= \(\widehat{COB}\)( góc nt - góc ở tâm cùng chắn cung \(\widebat{BC}\))
\(\widehat{COB}\)= \(^{60^0}\)
\(\Delta\)ABC vg tại c
cos 30= AC/AB
AB=2\(\sqrt{3}\)
R= \(\sqrt{3}\)
S hq OBC= \(\frac{60.R^2.3,14}{360}\)=1,57 cm2
\(\widehat{COB}\)= 600
sđ\(\widebat{BC}\)nhỏ= 600
sđ \(\widebat{BC}\) lớn= 360-60=3000
LcgBC LỚN= \(\frac{300.R.3,14}{180}\)\(\approx\)9,06 cm
ko bt có đúng ko nữa
# mã mã #
Trước tiên ta cần chứng minh định lý sin trong tam giác:
Cho tam giác ABC, \(BC=a,AC=b,AB=c\). Khi đó \(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}=2R\) với R là bán kính của đường tròn ngoại tiếp tam giác ABC.
Chứng minh:
Kẻ đường kính AD của (O), dễ thấy tam giác ABD vuông tại B \(\Rightarrow sinD=\dfrac{AB}{AD}=\dfrac{c}{2R}\). Lại có \(\widehat{D}=\widehat{C}\) (2 góc nội tiếp cùng chắn cung AB) \(\Rightarrow sinC=\dfrac{c}{2R}\Rightarrow\dfrac{c}{sinC}=2R\)
Tương tự, ta thu được đpcm
Trở lại bài toán chính, áp dụng định lý sin cho tam giác ABC, ta được \(\dfrac{AB}{sinC}=\dfrac{BC}{sinA}\) \(\Rightarrow AB=\dfrac{BCsinC}{sinA}\) \(=\dfrac{15.sin30}{sin40}\)\(\approx11,67\left(cm\right)\)
Vậy \(AB\approx11,67cm\)