Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: \(MN=\dfrac{BC}{2}=10\left(cm\right)\)
a: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
b: MN//BC
=>MN/BC=AM/AB=3/8
=>MN=27/8cm
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//AC và \(MN=\dfrac{AC}{2}=\dfrac{16}{2}=8\left(cm\right)\)
b: Xét ΔBAC có
M là trung điểm của AB
I là trung điểm của AC
Do đó: MI là đường trung bình của ΔBAC
Suy ra: MI//BC và \(MI=\dfrac{BC}{2}\)
mà \(BN=\dfrac{BC}{2}\)
nên MI//BN và MI=BN
hay BMIN là hình bình hành
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: BC=2MN
hay BC=6(cm)