Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔBAC cân tại A
mà AD là phân giác
nên AD là đường cao
b: góc FAC=(180 độ-góc BAC)/2
góc ACB=(180 độ-góc BAC)/2
Do đó: góc FAC=góc ACB
=>AF//BC
c: Xét ΔECB có
CA là đường trung tuyến
CA=EB/2
DO đó: ΔECB vuông tại C
=>CE//AD
Xét tứ giác FDAE có
FD//AE
EF//AD
Do đó: FDAE là hình bình hành
Suy ra: FE=AD
Ta có tam giác ABC cân tại A nên góc B=góc C mà góc ABC+ABD=180 độ
góc ACB+ACE=180 độ
=> góc ABD=góc ACE
Xét tam giác ABD và tam giác ACE có
AB=AC (tam giác ABC cân tại A)
góc ABD=góc ACE (cmt)
BD=CE(gt)
=> tam giác ABD=tam giác ACE(c-g-c)
=> AD=AE(cạnh tương ứng)
Vậy tam giác ADE cân và cân tại A
b/ Ta có tam giác ADE là tam giác cân và cân tại A nên góc D=góc E
Xét tam giác AMD và tam giác AME có:
AD=AE(tam giác ADE cân tại A)
góc D=góc E(cmt)
góc AMD=góc AME=90 độ
=> tam giác AMD=tam giác AME(ch-gn)
=> góc DAM=góc EAM(góc tương ứng)
Vậy AM là tia phân giác góc DAE
a) Tam giác ABE = tam giác AME (c.g.c)
b) Từ tam giác ABE = tam giác AME ở câu a
=> góc AEB = góc AEM , BE = EM
=> góc IEB = góc IEM , BE= EM
Tam giác BIE = tam giác MIE (c.g.c)
=> IB = IM
=> I là trung điểm BM
c) tam giác ENB = tam giác ECM (c.g.c)