K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔACK và ΔADK co

AC=AD
góc CAK=góc DAK

AK chung

=>ΔACK=ΔADK

=>góc ADK=90 độ

=>KD vuông góc AB

b: Xét ΔACB có AK là phân giác

nên KC/AC=KB/AB

mà AC<AB

nên KC<KB

a: Xét ΔKAB vuông tại K và ΔKMB vuông tại K có

KA=KM

KB chung

Do đó: ΔKAB=ΔKMB

b: Xét tứ giác ACMD có

K là trung điểm chung của AM và CD

=>ACMD là hình bình hành

=>MD//AC

=>MN//AC

Ta có: MN//AC

AB\(\perp\)AC

Do đó: MN\(\perp\)AB

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=5^2+12^2=169\)

hay BC=13(cm)

b) Xét ΔMKC và ΔMAB có 

MK=MA(gt)

\(\widehat{KMC}=\widehat{AMB}\)(hai góc đối đỉnh)

MC=MB(M là trung điểm của BC)

Do đó: ΔMKC=ΔMAB(c-g-c)

a: Xét ΔBKA vuông tại K và ΔBKM vuông tại K có

BK chung

KA=KM

=>ΔBKA=ΔBKM

=>góc ABK=góc MBK

Xét ΔBAC và ΔBMC có

BA=BM

góc ABC=góc MBC

BC chung

=>ΔBAC=ΔBMC

=>góc BMC=90 độ

b: Xét tứ giác ACMD có

K là trung điểm chung của AM và CD

=>ACMD là hình bình hành

=>MD//AC

=>MD vuông góc AB