Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) AC = 10cm Þ SABC =37,5 (cm2)
b) Chứng minh được M A E ^ = A M E ^ (cùng = A B C ^ ) Þ AE = ME. Cmtt ta có AE = NE. Từ đó suy ra ME = NE.
c) Chứng minh EH//GF (//MB) và GE//FH (//NC) Þ EGFH là hình bình hành. Chứng minh được H E G ^ = B A C ^ = 90 0 ⇒ E G F H là hình chữ nhật. Suy ra GH đi qua trung điểm của EF.
S E G F H = H E . E G = 1 2 M B . 1 2 N C = 1 4 . 2 3 A B . 2 3 A C = 25 3 ( c m 2 )
Mà S E G F H = 4. S ⇒ I H F S I H F = 25 12 c m 2
a) Học sinh tự làm
b) Chứng minh A N 1 2 N C ⇒ S A M E = S A E N ⇒ E M = E N
hay E là trung điểm MN.
c) Chứng minh được EG//HF và HE/FG nên EHFG là hình bình hành; Mặt khác BM ^ NC (do AB ^ AC)
Suy ra EHFG là hình chữ nhật
Ta có:
Vì K ∈ PQ nên PK // BM; KQ // MC
Trong ΔABM có PK // BM nên
Trong ΔAMC có KQ // MC nên
mà BM = MC (gt) nên PK = KQ.
Xét tam giác ABC có: \(\frac{AP}{AB}=\frac{AQ}{AC}\left(gt\right)\)
\(\Rightarrow PQ//BC\)( Định lý Ta-let đảo )
Xét tam giác ABM có PK//BM ( PQ//BC )
\(\Rightarrow\frac{PK}{BM}=\frac{AK}{AM}\)( hệ quả của định lý Ta-let ) (1)
Xét tam giác AMC có KQ//MC ( PQ//BC )
\(\Rightarrow\frac{KQ}{MC}=\frac{AK}{AM}\)( hệ quả của định lý Ta-let ) (2)
Mà BM=MC ( vì AM là đường trung tuyến úng với BC ) (3)
Từ (1),(2) và (3) \(\Rightarrow KQ=KP\left(đpcm\right)\)
Bài 3. Cho tam giác
ABC
. Trên cạnh
AC
lấy điểm
N
sao cho
2
5
CN
AN
. Trên cạnh BC lấy điểm
M
sao cho
BC xMC
và MN // AB.
Tìm x.
A. 5 B. 2,5 C. 3,5 D. 1,4