K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2019

a) xét tg QMB và tg MNC có 

MA=MN(GT)

MB=MC(GT)

=>tam giác QMB=tam giác MNC

17 tháng 3 2019

a/ Xét tam giác MNC có: 

I trung điểm MN

K trung điểm MC

Vậy IK là đường trung bình của tam giác MNC

=> IK = 1/2 NC (1)

Mặt khác, xét tam giác MCB có: 

K trung điểm MC

J trung điểm BC

Vậy KJ là đường trung bình tam giác MCB

=> KJ =1/2 BM (2)

mà BM = CN (gt) (3)

Từ (1), (2) và (3) => IK = KJ

=> Tam giác IKJ cân tại K

Lại có IK // NC (tính chất đường trung bình trong tam giác)

=> góc KIJ = góc CEJ (đồng vị) (4)

KJ // BM (tính chất đường trung bình trong tam giác)

=> góc KJI = ADJ (so le trong) (5)

mà góc KIJ = góc KJI (tam giác IKJ cân tại K) (6)

Từ (4), (5), (6) => góc ADE = góc AED

=> Tam giác ADE cân tại A (đpcm)

b/ Ko biết làm ^^

c/ Ko biết làm ^^

13 tháng 12 2021

a) Xét ΔABCΔABC có:

AB=AC(gt)AB=AC(gt)

=> ΔABCΔABC cân tại A.

=> ˆABC=ˆACBABC^=ACB^ (tính chất tam giác cân).

Ta có:

{ˆABM+ˆABC=1800ˆACN+ˆACB=1800{ABM^+ABC^=1800ACN^+ACB^=1800 (các góc kề bù).

Mà ˆABC=ˆACB(cmt)ABC^=ACB^(cmt)

=> ˆABM=ˆACN.ABM^=ACN^.

Xét 2 ΔΔ ABMABM và ACNACN có:

AB=AC(gt)AB=AC(gt)

ˆABM=ˆACN(cmt)ABM^=ACN^(cmt)

BM=CN(gt)BM=CN(gt)

=> ΔABM=ΔACN(c−g−c)ΔABM=ΔACN(c−g−c)

=> AM=ANAM=AN (2 cạnh tương ứng).

b) Theo câu a) ta có AM=AN.AM=AN.

=> ΔAMNΔAMN cân tại A.

=> ˆM=ˆNM^=N^ (tính chất tam giác cân)

Xét 2 ΔΔ vuông BMEBME và CNFCNF có:

ˆMEB=ˆNFC=900(gt)MEB^=NFC^=900(gt)

BM=CN(gt)BM=CN(gt)

ˆM=ˆN(cmt)M^=N^(cmt)

=> ΔBME=ΔCNFΔBME=ΔCNF (cạnh huyền - góc nhọn)

3 tháng 7 2016

Vẽ hình đj bn

3 tháng 7 2016

Bạn tự vẽ hình nhaleu

a.

Xét tam giác ABO và tam giác CDO có:

AO = CO (BO là trung truyến của tam giác ABC)

AOB = COD (2 góc đối đỉnh)

BO = DO (gt)

=> Tam giác ABO = Tam giác CDO (c.g.c)

=> BAO = DCO (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong

=> AB // CD.

b.

BO là trung tuyến của tam giác ABC

=> O là trung điểm của AC

=> AO = CO = \(\frac{1}{2}AC\) (1)

  • BO = DO (gt) => CO là trung tuyến của tam giác BCD
  • BM = CM (M là trung điểm của BC) => DM là trung tuyến của tam giác BCD

=> I là giao điểm của 2 đường trung tuyến CO và DM của tam giác BCD

=> I là trọng tâm của tam giác BCD.

=> IO = \(\frac{1}{3}OC\) (2)

Thay (1) vào (2), ta có:

IO = \(\frac{1}{3}OC=\frac{1}{3}\times\frac{1}{2}AC=\frac{1}{6}AC\)

\(\Rightarrow AC=6\times IO\)

c.

AB // CD

=> EBM = DCM (2 góc so le trong)

Xét tam giác EBM và tam giác DCM có:

EBM = DCM (chứng minh trên)

BM = CM (M là trung điểm của BC)

BME = CMD (2 góc đối đỉnh)

=> Tam giác EBM = Tam giác DCM (g.c.g)

=> BE = CD (2 cạnh tương ứng)

mà CD = AB (tam giác ABO = tam giác CDO)

=> BE = AB.

Chúc bạn học tốtok

19 tháng 7 2020

A B C M D N H K

a) TA CÓ \(AM=MC=\frac{AC}{2}=\frac{4}{2}=2\left(cm\right)\)

ta lại có BM = MD => CM LÀ ĐƯỜNG TRUNG TUYẾN THỨ NHẤT CỦA \(\Delta BCD\)

             NC = ND => BN LÀ ĐƯỜNG TRUNG TUYẾN THỨ HAI CỦA \(\Delta BCD\)

HAI ĐƯỜNG NÀY CẮT NHAU TẠI H

=> H LÀ TRỌNG TÂM CỦA \(\Delta BCD\)

MÀ CM LÀ ĐƯỜNG TRUNG TUYẾN THỨ NHẤT CỦA \(\Delta BCD\)

\(\Rightarrow CH=\frac{2}{3}CM\)

THAY \(CH=\frac{2}{3}.2\approx1,4\left(cm\right)\)

B) VÌ K LÀ TRUNG ĐIỂM CỦA BC 

=> DK LÀ ĐƯỜNG TRUNG TUYẾN THỨ BA CỦA \(\Delta BCD\)

VÌ H LÀ TRỌNG TÂM CỦA \(\Delta BCD\)

BẮT BUỘC DK PHẢI ĐI QUA H

=> \(K,H,D\)THẲNG HÀNG (ĐPCM)

 
19 tháng 7 2020

đố các bn mình có bao nhiêu hùng rác ?