Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABC\) và \(\Delta HAC\) có:
\(\widehat{BAC}=\widehat{AHC}=90^0\)
\(\widehat{ABC}=\widehat{HAC}\) do cùng phụ với góc BAH )
suy ra: \(\Delta ABC~\Delta HAC\)
b) Áp dụng định lý Pytago ta có:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\)\(BC^2=6^2+8^2=100\)
\(\Leftrightarrow\)\(BC=\sqrt{100}=10\)
Áp dụng hệ thức lượng ta có:
\(AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=4,8\)cm
\(CH=\frac{AC^2}{BC}=\frac{8^2}{10}=6,4\)cm
\(BH=BC-HC=10-6,4=3,6\)cm
a: Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
nên MN//BC
b: AM+MB=AB
AN+NC=AC
mà AM=AN và AB=AC
nên MB=NC
c: Đề sai rồi bạn
a) Ta có: \(\dfrac{AM}{AB}=\dfrac{1}{4}\)
\(\dfrac{AN}{AC}=\dfrac{1.5}{6}=\dfrac{1}{4}\)
Do đó: \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)\(\left(=\dfrac{1}{4}\right)\)
Xét ΔABC có
M\(\in\)AB(gt)
N\(\in\)AC(gt)
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)(cmt)
Do đó: MN//BC(Định lí Ta lét đảo)
Xét \(\Delta\)AMN và \(\Delta\)ABC có:
\(\frac{AM}{AB}=\frac{AN}{AC}\left(\frac{10}{15}=\frac{14}{21}\right)\)
=> MN // BC (1)
Gọi M là trung điểm của BC.
Gọi G là giao điểm AM và MN
Xét \(\Delta\)ABM có:
MG// BM ( theo(1))
=> \(\frac{AG}{AM}=\frac{AM}{AB}=\frac{10}{15}=\frac{2}{3}\)
=> G là trọng tâm của \(\Delta\)ABC
Vậy MN qua trong tâm \(\Delta\)ABC.
a: Xét ΔABC vuông tai A và ΔHBA vuông tại H co
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: \(BC=\sqrt{8^2+15^2}=17\left(cm\right)\)
AH=8*15/17=120/17(cm)
c: AM*AB=AH^2
AN*AC=AH^2
=>AM*AB=AN*AC