Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a )
Xét \(\Delta ABI\)và \(\Delta ACI\) có :
\(\hept{\begin{cases}AB=AC\left(GT\right)\\AI\left(chung\right)\\BI=CI\left(GT\right)\end{cases}\Rightarrow\Delta ABI=\Delta ACI\left(c.c.c\right)}\)
\(\Rightarrow\widehat{ABI}=\widehat{ACI}\)( 2 góc tương ứng )
\(\widehat{BAI}=\widehat{CAI}\)( 2 góc tương ứng )
Mà \(AI\)nằm trong \(\widehat{BAC}\)
\(\Rightarrow AI\)là p/g \(\widehat{BAC}\)
b )
Ta có : \(\widehat{ABI}+\widehat{ABM}=180^0\) ( 2 góc kề bù )
\(\Rightarrow\widehat{ABM}=180^0-\widehat{ABI}\)
\(\widehat{ACI}+\widehat{ACN}=180^0\)( 2 góc kề bù )
\(\Rightarrow\widehat{ACN}=180^0-\widehat{ACI}\)
Lại có : \(\widehat{ABI}=\widehat{ACI}\)
\(\Rightarrow180^0-\widehat{ABI}=180^0-\widehat{ACI}\)
\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)
Xét \(\Delta ABM\)và \(\Delta ACN\)có :
\(\hept{\begin{cases}AB=AC\left(GT\right)\\\widehat{ABM}=\widehat{ACN}\\BM=CN\left(GT\right)\end{cases}\Rightarrow\Delta ABM=\Delta ACN\left(c.g.c\right)}\)
\(\Rightarrow AM=AN\)( 2 cạnh tương ứng )
c )
Do \(\widehat{BAI}=\widehat{CAI}\left(theo:a\right)\)
hay \(\widehat{BAK}=\widehat{CAK}\)
Xét \(\Delta ABK\)và \(\Delta ACK\)có :
\(\hept{\begin{cases}AB=AC\left(GT\right)\\\widehat{BAK}=\widehat{CAK}\left(cmt\right)\Rightarrow\\AK\left(chung\right)\end{cases}\Delta ABK=\Delta ACK\left(c.g.c\right)}\)
\(\Rightarrow\widehat{ABK}=\widehat{ACK}\)( 2 góc tương ứng )
Mà \(\widehat{ABK}=90^0\left(BK\perp AB\right)\)
\(\Rightarrow\widehat{ACK}=90^0\)
\(\Rightarrow KC\perp AC\left(Đpcm\right)\)
A A A B B B C C C D D D E E E I I I K K K 1 2 3 4 2 1 2 1
Tia phân giác của \(\widehat{BIC}\)cắt BC ở K.\(\Delta ABC\)có \(\widehat{A}=60^0\)
Xét \(\Delta ABC\)theo định lí tổng ba góc trong một tam giác
\(\widehat{A}+\left(\widehat{B}+\widehat{C}\right)=180^0\)
=> \(60^0+\left(\widehat{B}+\widehat{C}\right)=180^0\)
=> \(\widehat{B}+\widehat{C}=120^0\)
=> \(\widehat{B_1}+\widehat{C_1}=\frac{\widehat{B}+\widehat{C}}{2}=\frac{120^0}{2}=60^0\)
\(\Delta BIC\)có \(\widehat{B_1}+\widehat{C_1}=60^0\)nên \(\widehat{B_1}+\widehat{C_1}+\widehat{BIC}=180^0\)
=> 600 + \(\widehat{BIC}\)= 1800
=> \(\widehat{BIC}=120^0\)
=> \(\widehat{I_1}=60^0,\widehat{I_4}=60^0\)
IK là tia phân giác của góc BIC nên \(\widehat{I_2}=\widehat{I_3}=60^0\)
Xét \(\Delta BIE\)và \(\Delta BIK\)có :
\(\widehat{B_1}=\widehat{B_2}\)
BI cạnh chung
\(\widehat{I_1}=\widehat{I_2}=60^0\left(cmt\right)\)
=> \(\Delta BIE=\Delta BIK\left(g.c.g\right)\)
=> IE = IK(hai cạnh tương ứng) (1)
Xét \(\Delta CID\)và \(\Delta CIK\)có :
\(\widehat{C_1}=\widehat{C_2}\)
CI cạnh chung
\(\widehat{I_3}=\widehat{I_4}=60^0\left(cmt\right)\)
=> \(\Delta CID=\Delta CIK\left(g.c.g\right)\)
=> ID = IK(hai cạnh tương ứng) (2)
Từ (1) và (2) => ID = IE
a: Xét ΔABD và ΔKBD có
BA=BK
góc ABD=góc KBD
BD chung
Do đó: ΔABD=ΔKBD
Suy ra: DA=DK
b: Ta có: ΔBAD=ΔBKD
nên góc BKD=góc BAD=90 độ
=>DK vuông góc với BC
=>DK//AH
a: \(\widehat{C}=90^0-30^0=60^0\)
c: Xét ΔCAD và ΔCMD có
CA=CM
\(\widehat{ACD}=\widehat{MCD}\)
CD chung
Do đó: ΔCAD=ΔCMD
a,b) A B C M D x y K 60* 30*
c) Vì CD là tia phân giác của \(\widehat{C}\) nên \(\widehat{ACD}=\widehat{MCD}=\frac{60}{2}=30\)*
Xét ΔACD và ΔMCD, ta có:
CA=CM (gt)
\(\widehat{ACD}=\widehat{MCD}=30\)* (cmt)
Chung cạnh CD
Do đó: ΔACD = ΔMCD (c.g.c)
d) Mk sửa lại đề là cắt xy tại K bạn nhé !!!
Vì AK || DC nên \(\widehat{ACD}=\widehat{CAK}=30\)* (So le trong)
Xét ΔDAC va ΔKCA, ta có:
\(\widehat{ACD}=\widehat{CAK}=30\)* (cmt)
Chung cạnh AC
\(\widehat{DAC}=\widehat{KCA}=90\)*
Do đó: ΔDAC = ΔKCA (g.c.g)
=> AK=CD (2 cạnh tương ứng).
e) Trong ΔAKC có: \(\widehat{CAK}+\widehat{AKC}+\widehat{KCA}=180\)*
\(\Rightarrow\widehat{AKC}=180-\left(\widehat{CAK}+\widehat{KCA}\right)\)
\(\Rightarrow\widehat{AKC}=180-\left(30+90\right)\)
\(\Rightarrow\widehat{AKC}=60\)*
a,Xét tam giác BMH và CMK có
+ BM = CM ( GT)
+ BMH=CMK (Hai góc đối đỉnh)
+ MH = MK (GT)
,Do đó tam giác BMH= tam giác CMK (Đpcm)
b,Vì tam giác BMH=tam giác CMK ( chứng minh trên)
nên MBH=MCK (Hai góc tương ứng)
mà 2 góc MBH và MCK ở vị trí so le trong nên BH //CK
lại có BH vuông góc AC (GT)
nên CA vuông góc CK (đpcm)
* Chứng minh được CH = CG
* Chứng minh được CH = BK
Suy ra đpcm
a ) Xét ∆BAD và ∆CAD
AB = AC ( ∆ABC cân )
\(\widehat{B}=\widehat{C}\)
\(\widehat{BAD}=\widehat{DAC}\)
=> ∆ABH = ∆ACH(g.c.g)