K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC và ΔCDA có

\(\widehat{BAC}=\widehat{DCA}\)(hai góc so le trong, BA//CD)

AC chung

\(\widehat{BCA}=\widehat{DAC}\)(hai góc so le trong, AD//BC)

Do đó: ΔABC=ΔCDA

b: Ta có: ΔABC=ΔCDA

=>AB=CD và BC=DA

Xét ΔADB và ΔCBD có

AD=CB

BD chung

AB=CD

Do đó: ΔADB=ΔCBD

c: Xét ΔOAD và ΔOCB có

\(\widehat{OAD}=\widehat{OCB}\)(hai góc so le trong, AD//BC)

AD=BC

\(\widehat{ODA}=\widehat{OBC}\)(hai góc so le trong, AD//BC)

Do đó: ΔOAD=ΔOCB

=>OA=OC và OD=OB

Xét ΔABO và ΔCDO có

AB=CD

OB=OD

OA=OC

Do đó: ΔABO=ΔCDO

a: Xét ΔABC và ΔCDA có 

\(\widehat{BAC}=\widehat{DCA}\) 

AC chung

\(\widehat{ACB}=\widehat{CAD}\)

Do đó: ΔABC=ΔCDA

b: Xét ΔADB và ΔCBD có

BD chung

AD=CB

AB=CD

Do đó: ΔADB=ΔCBD

13 tháng 1 2017

\(\Delta ABC\)\(\Delta ADC\)

AC là cạnh chung

\(\widehat{DAC}=\widehat{BCA}\)(so le trong )

\(\widehat{BAC}=\widehat{DCA}\)(so le trong )

Do đó \(\Delta ABC\)  = \(\Delta ADC\)(g.c.g)

13 tháng 1 2017

câu a đó

6:

a: Xét ΔABC và ΔCDA có

góc BAC=góc DCA

AC chung

góc BCA=góc DAC

=>ΔABC=ΔCDA

b: Xét ΔADB và ΔCBD có

AD=CB

AB=CD

DB chung

=>ΔADB=ΔCBD

c: Xét tứ giác ABCD có

AB//CD

AD//BC

=>ABCD là hình bình hành

=>O là trung điểm chung của AC và DB

Xét ΔOAB và ΔOCD có

OA=OC

góc AOB=góc COD

OB=OD
=>ΔOAB=ΔOCD

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:a) Góc OAB = góc OCAb) Tam giác AOM = tam giác CONc) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MONBài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C...
Đọc tiếp

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:
a) Góc OAB = góc OCA
b) Tam giác AOM = tam giác CON
c) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MON
Bài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C nằm giữa O, D) sao cho OA=OC và OB=OD. Chứng minh:
a) Tam giác AOD = tam giác COB
b) Tam giác ABD = tam giác CDB
c) Gọi I là giao điểm của AD và BC. Chứng minh IA=IC; IB=ID
Bài 3: Cho tam giác ABC. Qua A kẻ đường thẳng song song với BC, qua C kẻ đường thẳng song song với AB, hai đường thẳng này cắt nhau tại D
a) Chứng minh: AD=BC và AB=DC
b) Gọi M, N lần lượt là trung điểm của BC và AD. Chứng minh: AM=CN
c) Gọi O là giao điểm của AC và BD. Chứng minh: OA=OC và OB=OD
d) Chứng minh: M, O, N thẳng hàng
Bài 4: Cho góc xOy = 60 độ. Vẽ Oz là tia phân giác của góc xOy 
a) Tính góc xOy?
b) Trên Ox lấy điểm A và trên Oy lấy điểm B sao cho OA=OB. Tia Oz cắt AB tại I. Chứng minh tam giác OIA = tam giác OIB
c) Chứng minh OI vuông góc AB
d) Trên tia Oz lấy điểm M. Chứng minh MA=MB
e) Qua M vẽ đường thẳng song song với AB cắt tia Ox, Oy lần lượt tại C và D. Chứng minh BD=AC

       Mọi ng giúp mình giải bài này nhé! Cảm ơn mn <3

7
31 tháng 5 2018

Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá

31 tháng 5 2018

3/ (Bạn tự vẽ hình giùm)

a/ \(\Delta ABC\)và \(\Delta ADC\)có:

\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)

Cạnh AC chung

\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)

=> \(\Delta ABC\)\(\Delta ADC\)(g. c. g)

=> AD = BC (hai cạnh tương ứng)

và AB = DC (hai cạnh tương ứng)

b/ Ta có AD = BC (cm câu a)

và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)

và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)

=> AN = MC

Chứng minh tương tự, ta cũng có: BM = ND

\(\Delta AMB\)và \(\Delta CND\)có:

BM = ND (cmt)

\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)

AB = CD (\(\Delta ABC\)\(\Delta ADC\))

=> \(\Delta AMB\)\(\Delta CND\)(c. g. c)

=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)

và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)\(\Delta ADC\))

=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)

=> \(\widehat{MAC}=\widehat{ACN}\)(1)

Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)

và AN = MC (cmt) (3)

=> \(\Delta MAC=\Delta NAC\)(g, c. g)

=> AM = CN (hai cạnh tương ứng) (đpcm)

c/ \(\Delta AOB\)và \(\Delta COD\)có:

\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)

AB = CD (cm câu a)

\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)

=> \(\Delta AOB\)\(\Delta COD\)(g. c. g)

=> OA = OC (hai cạnh tương ứng)

và OB = OD (hai cạnh tương ứng)

d/ \(\Delta ONA\)và \(\Delta MOC\)có:

\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)

OA = OC (O là trung điểm AC)

\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)

=> \(\Delta ONA\)\(\Delta MOC\)(g. c. g)

=> ON = OM (hai cạnh tương ứng)

=> O là trung điểm MN

=> M, O, N thẳng hàng (đpcm)

Mk thấy đề sai hay sao ý ko có đường thẳng nào đi qua B song song vs CD và cắt DM cả

19 tháng 3 2020

mik thấy cô ghi đè s mik ghi lại y chang chứ mik ko bik j cả. mik đọc cx thấy sai sai cái j á mà ko bik mik đọc đè đúng hay là sai nên mik mới đăng 

12 tháng 1 2018

A B C D O

a) Xét \(\Delta ABC;\Delta ADC\) có :

\(\widehat{ACB}=\widehat{CAD}\) (so le trong)

\(AC:chung\)

\(\widehat{BAC}=\widehat{DCA}\) (so le trong)

=> \(\Delta ABC=\Delta ADC\left(g.c.g\right)\)

b) Xét \(\Delta ADB;\Delta CBD\) có :

\(AB=CD\left(\Delta ABC=\Delta ADC-cmt\right)\)

\(BD:Chung\)

\(AD=BC\) (\(\Delta ABC=\Delta ADC\left(cmt\right)\))

=> \(\Delta ADB=\Delta CBD\left(c.c.c\right)\)

c) Xét \(\Delta ABO;\Delta COD\) có :

\(\widehat{OAB}=\widehat{OCD}\left(slt\right)\)

\(AB=DC\left(cmt\right)\)

\(\widehat{OBA}=\widehat{ODC}\left(slt\right)\)

=> \(\Delta ABO=\Delta COD\left(g.c.g\right)\)

28 tháng 12 2018

21 tháng 12 2022

a: Xét ΔADE có

AG vừa là đường cao, vừa là phân giác

nên ΔADE cân tại A

=>AD=AE

b: góc BFD=góc DEA

góc BDF=góc BEA

Do đo: góc BFD=góc BDF

=>ΔBFD cân tại B

c: Xét ΔBMF và ΔCME có

góc BMF=góc CME
MB=MC

góc MBF=góc MCE
Do đó: ΔBMF=ΔCME

=>BF=CE=BD

31 tháng 5 2019

21 tháng 12 2022

a: Xét ΔADE có

AG vừa là đường cao, vừa là phân giác

nên ΔADE cân tại A

=>AD=AE

b: góc BFD=góc DEA

góc BDF=góc BEA

Do đo: góc BFD=góc BDF

=>ΔBFD cân tại B

c: Xét ΔBMF và ΔCME có

góc BMF=góc CME
MB=MC

góc MBF=góc MCE
Do đó: ΔBMF=ΔCME

=>BF=CE=BD