K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2018

a, HS tự chứng minh

b, ∆ADE:∆ACD (g.g)

=>  A D 2 = A E . A C

c, Tương tự: ∆ADF:∆ABD =>  A D 2 = A B . A F => ĐPCM

17 tháng 2 2020

A B C D E F

a)

+) Tứ giác AEDF nội tiếp 

=> ^AED = ^DFC (1)

và ^AFD = ^BED ( 2)

+) Ta có: ^EAD = ^FAD ( AD là phân giác ^BAC ) 

^FDC = ^FAD ( cùng chắn cung DF )

^BDE = ^EAD ( cùng chắn cung DE )

=> ^FDC = ^FAD = ^EAD = ^BDE ( 3)

+) Xét \(\Delta\)AED và  \(\Delta\)DFC  có: 

^EAD = ^FDC ( theo (3))

^AED = ^DFC ( theo (1)

=> \(\Delta\)AED ~ \(\Delta\)DFC 

=> \(\frac{AE}{DF}=\frac{ED}{FC}\)=> AE . FC = DF . ED ( 4)

+) Xét \(\Delta\)AFD và \(\Delta\)DEB có:

^DAF = ^BDE ( theo (3))

^AFD = ^DEB ( theo ( 2)

=> \(\Delta\)AFD ~ \(\Delta\)DEB 

=> \(\frac{AF}{ED}=\frac{DF}{BE}\Rightarrow AF.BE=DF.ED\)(5)

Từ (4) ; (5) => AF.BE = AE.FC

=> \(\frac{AF}{FC}=\frac{AE}{BE}\)

=> EF//BC

b) Xét \(\Delta\)AED và \(\Delta\)ADC có:

^EAD = ^DAC 

^ADE = ^ACD ( vì ^ADE = ^AFE ( chắn cung AE ) và ^AFE = ^ACD  (đồng vị ))

=> \(\Delta\)AED ~ \(\Delta\)ADC

=> \(\frac{AE}{AD}=\frac{AD}{AC}\)

=> AD^2 = AE.AC

c) Tương tự cm \(\Delta\)AFD ~ \(\Delta\)ADB 

=> \(\frac{AF}{AD}=\frac{AD}{AB}\)

=> AD^2=AF.AB

kết hợp vs câu b => AB.AF = AE.AC

2 tháng 3 2020

Xét 2 tg AED và ADC có

^EAD=^DAC (đề bài) (1) 

Ta có:

^AEF=^ADF (Góc nt cùng chắn cung AF)

^DEF= 1/2 số đo cung DF (góc nt)

^CDF=1/2 số đo cung DF (góc giới hạn bởi tiếp tuyến và dây cung)

=> ^AEF+^DEF=^AED=^ADF+^CDF=^ADC (2)

Từ (1) và (2) => tg AED và tg ADC đồng dạng

=> AE/AD=AD/AC => AD^2=AE.AC

17 tháng 2 2020

Câu hỏi của TRẦN PHAN ĐỨC MINH - Toán lớp 9 - Học toán với OnlineMath

17 tháng 2 2020

Câu hỏi của TRẦN PHAN ĐỨC MINH - Toán lớp 9 - Học toán với OnlineMath