K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a:

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=15^2+20^2=625\)

=>\(BC=\sqrt{625}=25\left(cm\right)\)

Ta có: ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot15\cdot20=150\left(cm^2\right)\)

Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{CD}=\dfrac{AB}{AC}\)

=>\(\dfrac{BD}{CD}=\dfrac{3}{4}\)
=>\(\dfrac{CD}{BD}=\dfrac{4}{3}\)

=>\(\dfrac{CD+BD}{BD}=\dfrac{4+3}{3}\)

=>\(\dfrac{BC}{BD}=\dfrac{7}{3}\)

=>\(BD=\dfrac{3}{7}BC\)

=>\(S_{ABD}=\dfrac{3}{7}\cdot S_{ABC}\)

b: Vì I là trung điểm của BC

nên \(S_{ABI}=\dfrac{1}{2}\cdot S_{ABC}\)

=>\(\dfrac{S_{ABD}}{S_{ABI}}=\dfrac{3}{7}:\dfrac{1}{2}=\dfrac{6}{7}\)

c: \(S_{ABD}=\dfrac{3}{7}\cdot S_{ABC}=\dfrac{3}{7}\cdot140=60\left(cm^2\right)\)

\(S_{ABI}=\dfrac{7}{6}\cdot S_{ABD}=\dfrac{7}{6}\cdot60=70\left(cm^2\right)\)

ta có: \(S_{ABD}+S_{AID}=S_{ABI}\)

=>\(S_{AID}+60=70\)

=>\(S_{AID}=10\left(cm^2\right)\)

20 tháng 2 2021

a/ Theo tính chất đường phân giác trong tam giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn tỉ lệ với hai cạnh kề của hai đoạn ấy ta có

\(\frac{BD}{CD}=\frac{AB}{AC}=\frac{m}{n}\)

Hai tam giác ABD và tam giác ACD có chung đường cao hạ từ A xuống BC nên

\(\frac{S_{\Delta ABD}}{S_{\Delta ACD}}=\frac{BD}{CD}=\frac{m}{n}\)

b/ Ta có

\(\frac{S_{\Delta ABD}}{S_{\Delta ACD}}=\frac{m}{n}\Rightarrow\frac{S_{\Delta ABD}}{m}=\frac{S_{\Delta ACD}}{n}=\frac{S_{\Delta ABD}+S_{\Delta ACD}}{m+n}=\frac{S_{\Delta ABC}}{m+n}=\frac{s}{m+n}\)

\(\Rightarrow S_{\Delta ABD}=\frac{sm}{m+n}\)

Xét hai tam giác ABM và tam giác ABC có chung đường cao hạ từ A xuống BC nên

\(\frac{S_{\Delta ABM}}{S_{\Delta ABC}}=\frac{BD}{BC}=\frac{1}{2}\Rightarrow S_{\Delta ABM}=\frac{S_{\Delta ABC}}{2}=\frac{s}{2}\)

Mà \(S_{\Delta ADM}=S_{\Delta ABM}-S_{\Delta ABD}=\frac{s}{2}-\frac{sm}{m+n}\)


 

20 tháng 2 2021

bạn ơi tại sao  \(\frac{BD}{BC}=\frac{1}{2}\) vậy bạn?

16 tháng 2 2022

https://hoc24.vn/cau-hoi/.4762222558882

-Bạn chỉ cần thay đổi một chút thôi.

16 tháng 5 2021

a) xét△HBA và △ABC có:

góc BAH= góc BHA (=90 độ)

góc B chung

⇒△HBA∼△ABC (g.g)

b) áp dụng định lí pytago vào △ABC vuông tại A

AB2+AC2=BC2

⇔162+122=BC2

⇔256+144=BC2

⇔√400=20=BC(cm)

vậy BC= 20 cm

vì△HBA∼△ABC(cmt)

ta có tỉ lệ

\(\dfrac{AH}{AC}=\dfrac{AB}{BC}\)hay \(\dfrac{AH}{16}=\dfrac{12}{20}\)

\(AH=\dfrac{12\cdot16}{20}=\dfrac{48}{5}=9.6\left(cm\right)\)

⇒AH = 9,6 cm

áp dụng tính chất đường phân giácAD trong tam giác

\(\dfrac{AB}{AC}=\dfrac{BD}{DC}\)\(\dfrac{12}{16}=\dfrac{BD}{DC}\)\(\dfrac{DC}{16}=\dfrac{BD}{12}\)

áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\dfrac{DC}{16}=\dfrac{BD}{12}=\dfrac{DC+BD}{28}=\dfrac{20}{28}=\dfrac{5}{7}\)

\(\dfrac{BD}{12}=\dfrac{5}{7}\)\(BD=\dfrac{60}{7}\left(cm\right)\)

c) \(DC=BC-BD=20-\dfrac{60}{7}=\dfrac{80}{7}\)

 

hs tự làmhehe

Học Hành Con Cặk Vào Game mẹ đi hc cc

24 tháng 2 2018

A B C D H m n

Gọi tỉ số diện tích tam giác ABD và diện tích tam giác ACD bằng \(\frac{m}{n}\)

Kẻ \(AH\perp BC\)

Ta có: \(S_{ABD}=\frac{1}{2}AH.BD\)và \(S_{ADC}=\frac{1}{2}AH.DC\)

\(\frac{S_{ABD}}{S_{ADC}}=\frac{\frac{1}{2}AH.BD}{\frac{1}{2}AH.DC}=\frac{BD}{DC}\)

Mặt khác: AD là đường phân giác của tam giác ABC

\(\Rightarrow\frac{BD}{DC}=\frac{AB}{AC}=\frac{m}{n}\)

25 tháng 2 2018

Gọi DM và DN lần lượt là đường cao của tam giác ADB và tam giác ACD
Xét tam giác ADB và tam giác ACD có :
góc BAD=góc DAC (gt)
AD chung
góc AMD = góc AND ( = 90 độ )
=> Tam giác ADB = tam giác ACD ( ch-gn)
=> DM=DN
TA có :
Stam giác ABD/Stam giác ADC
=(1/2.DM.AB)/(1/2.DN.AC)
=(1/2.DM.AB)/(1/2.DM.AC)=AB/AC=m/n (đpcm)

Như vầy cũng được mà trên mạng nó có mà sao bạn không chịu tìm nhỉ ???

25 tháng 2 2021

đề bạn sai rồi