K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2020

ảnh bị người đời tí=)))

29 tháng 7 2020
https://i.imgur.com/2tBWRtm.jpg
7 tháng 1 2016

Gọi (Q) là đt Ơ le, H là trực tâm, K là trung điểm AH, M là giao AH và BC => M, K, D Є (Q) 
Gọi P là đầu thứ 2 đường kính qua A. 
=> CP // BH (cùng ┴ AC), BP // CH (cùng ┴ AB) => BPCH là hình bình hành 
=> HP cắt BC tại trung điểm BC, tức HP đi qua D => OD là đtb của ∆ PAH => OD = AH / 2 = AK 
=> AODK là hbh => DK // AO => DD' trùng với DK 
Dễ thấy DK là đường kính của (Q), tức DD' đi qua tâm đt Ơ le 
Tương tự EE', FF' cũng đi qua tâm đt Ơ le 

Bài 1: Cho tam giác ABC cân tại A, nội tiếp đường tròn(O). Đường cao AH cắt đường tròn ở D.a) Vì sao AD là đường kính của đường tròn(O)b) Tính góc ∠ACDc) Cho BC = 24cm; AC = 20cm. Tính đường cao AH và bán kính đường tròn(O)Bài 2: Cho tam giác ABC nội tiếp đường tròn (O;R). Gọi M là trung điểm BC. Giả sử O nằm trong tam giác AMC hoặc O nằm giữa A và M. Gọi I là trung điểm AC. CMR:a) Chu vi tam giác...
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A, nội tiếp đường tròn(O). Đường cao AH cắt đường tròn ở D.
a) Vì sao AD là đường kính của đường tròn(O)

b) Tính góc ∠ACD
c) Cho BC = 24cm; AC = 20cm. Tính đường cao AH và bán kính đường tròn(O)

Bài 2: Cho tam giác ABC nội tiếp đường tròn (O;R). Gọi M là trung điểm BC. Giả sử O nằm trong tam giác AMC hoặc O nằm giữa A và M. Gọi I là trung điểm AC. CMR:

a) Chu vi tam giác IMC lớn hơn 2R
b) Chu vi tam giác ABC lớn hơn 4R

Bài 3: Cho tam giác ABC có D, E, F theo thứ tự là trung điểm BC, CA, AB. G, H, I theo thứ tự là chân đường cao từ đỉnh A, B, C. Trực tâm tam giác ABC là S. J, K, L theo thứ tự là trung điểm của SA, SB, SC. Chứng minh rằng: 9 điểm D, E, F, G, H, I, J, K, L cùng thuộc đường tròn. ( Gợi ý: đường tròn đường kính JD)
Bài 4: Cho tam giác ABC nội tiếp(O), H là trực tâm tam giác ABC. Gọi D, E, F thứ tự là trung điểm của BC, CA, AB. Đường tròn tâm D bán kính DH cắt BC tại A1, A2, đường tròn tâm E bán kính EH cắt CA tại B1, B2, đường tròn tâm F bán kính FH cắt AB tại C1, C2.

a) : Chứng minh 3 đường thẳng DD' , EE' , FF' đồng quy ( DD' song song với OA, EE' song songvới OB, FF' song song với OC ).

b) Chứng minh 6 điểm A1, A2, B1, B2, C1, C2 nằm trên một đường tròn.

1
2 tháng 9 2020

Bài 1 :                                                      Bài giải

Hình tự vẽ //                                       

a) Ta có DOC = cung DC

Vì DOC là góc ở tâm và DAC là góc chắn cung DC

=>DOC = 2 . AOC (1)

mà tam giác AOC cân =>AOC=180-2/AOC (2)

Từ (1) ; (2) ta được DOC + AOC = 180

b) Góc ACD là góc nội tiếp chắn nữa đường tròn

=>ACD=90 độ

c) c) HC=1/2*BC=12

=>AH=căn(20^2-12^2)=16

Ta có Sin(BAO)=12/20=>BAO=36.86989765

=>AOB=180-36.86989765*2=106.2602047

Ta có AB^2=AO^2+OB^2-2*OB*OA*cos(106.2602047)

<=>AO^2+OA^2-2OA^2*cos(106.2602047)=20^2

=>OA=12.5

a) Ta có: OA⊥d(gt)

d//d'(gt)

Do đó: OA⊥d'(Định lí 1 từ vuông góc tới song song)

hay AE⊥BE

Xét tứ giác ABFE có 

\(\widehat{AFB}=\widehat{AEB}\left(=90^0\right)\)

\(\widehat{AFB}\) và \(\widehat{AEB}\) là hai góc cùng nhìn cạnh AB

Do đó: ABFE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

27 tháng 1 2022

           

27 tháng 1 2022

        

27 tháng 1 2022

a) Vì d là tiếp tuyến của (O) tại A

⇒ OA ⊥ D mà d // d'

⇒ OA ⊥ D tại E

⇒ \(\widehat{AEB}=90^0\)

Suy ra: điểm E thuộc đường tròn đường kính AB           (1)

Ta có:   AF ⊥ BC    ⇒     \(\widehat{AFB}=90^0\)

Suy ra:  điểm F thuộc đường tròn đường kính AB           (2)

Từ (1) và (2):   ⇒    A, B, E, F cùng thuộc đường tròn đường kính AB

Từ đó:   tam giác ABFE nội tiếp

b) Ta có:    \(\widehat{ACB}=\widehat{IAB}\) ( góc nội tiếp và góc tạo bởi tiếp tuyến cùng chắn cung AB )

Lại có:    \(\widehat{ABD}=\widehat{IAB}\) ( so le trong ) 

⇒ \(\widehat{ABD}=\widehat{ACB}\)

Xét △ ABD và △ ACB có:

   \(\widehat{ABD}=\widehat{ACB}\) ( cmt )

   \(\widehat{A}\) chung 

⇒ △ ABD ∼ △ ACB    ( g - g )

Từ đó:   \(\dfrac{AB}{AD}=\dfrac{AC}{AB}\Leftrightarrow AB^2=AC.AD\)   ( đpcm )

c) Theo câu a, ta có: tam giác ABFE nội tiếp

⇒ \(\widehat{ABE}=\widehat{AFE}\)     ( 2 góc nội tiếp cùng chắn cung AE )

Mà   \(\widehat{ABE}=\widehat{ACB}\Rightarrow\widehat{AFE}=\widehat{ACB}\)      (3) 

Ta có:  M là trung điểm của AB và N là trung điểm của BC

⇒ MN là đường trung bình △ ABC

⇒  MN // AC

⇒     \(\widehat{BMN}=\widehat{ACB}\)   ( đồng vị )      (4)

Từ (3) và (4):     \(\widehat{AFE}=\widehat{BNM}\)

Mà \(\widehat{AFE}+\widehat{NFE}=90^0\Rightarrow\widehat{BNM}+\widehat{NFE}=90^0\)

Gọi H là giao điểm của EF và MN

⇒ \(\widehat{FNH}=90^0\)

⇒   EF ⊥  MN   ( đpcm )

1. Cho ΔABC nội tiếp đường tròn (O). D, E, F lần lượt là trung điểm của BC, AC, AB. Kẻ DD' song song với OA, EE' song song với OB, FF' song song với OC. Chững minh DD', EE', FF' đồng quy2. Cho tam giác ABC nội tiếp đường tròn (O;R). Diểm M thuộc cung nhỏ BC. Gọi I, K, H theo thứ tự là hình chiếu vuông góc của M trên AB, AC, BC. Gọi P, Q lần lượt là trung điểm của AB, HKa) Chứng minh:ΔBMA đồng dạng ΔHMKb)...
Đọc tiếp

1. Cho ΔABC nội tiếp đường tròn (O). D, E, F lần lượt là trung điểm của BC, AC, AB. Kẻ DD' song song với OA, EE' song song với OB, FF' song song với OC. Chững minh DD', EE', FF' đồng quy

2. Cho tam giác ABC nội tiếp đường tròn (O;R). Diểm M thuộc cung nhỏ BC. Gọi I, K, H theo thứ tự là hình chiếu vuông góc của M trên AB, AC, BC. Gọi P, Q lần lượt là trung điểm của AB, HK

a) Chứng minh:ΔBMA đồng dạng ΔHMK

b) Chứng minh: ΔBMH đồng dạng ΔPMQ TỪ ĐÓ SUY RA MQ⊥PQ

c) Cho ΔABC đều. Xác định vị trí của điểm M trên cũng BC để MA+MB+MC đạt giá trị lớn nhất

3. Cho tam giác ABC nhọn và O là một điểm nằm trong tam giác. Các tia OA, BO, CO lần lược cắt BC, AC, AB tại M, N, P.

a) Chứng minh \(\frac{S_{BOC}}{S_{ABC}}=\frac{OM}{AM}\)

b) Chứng minh: \(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\)≥9

0