K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2018

A B C E H O .

a, Xét tam giác ADB và tam giác AEC , ta có 

góc EDC = góc ACE = 90 độ ( góc ACE là góc nội tiếp chắn nửa đường tròn )

góc ABD = góc AEC  ( 2 góc nội tiếp cùng chắn cung AC )

\(\Leftrightarrow\)tam giác ADB đồng dạng với tam giác AEC (g_g)

\(\Rightarrow\)\(\frac{AD}{AB}=\frac{AC}{AE}\)( Các cặp góc tương ứng )

hay AD.AE=AB.AC

6 tháng 6 2018

A B C D O M N E I H P

a) Ta có: DE là tiếp tuyến của (O) nên ^ODE=900 . Mà OH vuông góc BE

=> ^OHE=900 => ^ODE=^OHE.

Xét tứ giác OHDE: ^OHE=^ODE=900 => Tứ giác OHDE nội tiếp đường tròn. (đpcm).

b) Dễ thấy ^EDC=^EBD (T/c góc tạo bởi tiếp tuyến và dây cung)

=> \(\Delta\)ECD ~ \(\Delta\)EDB (g.g) => \(\frac{ED}{EB}=\frac{EC}{ED}\Rightarrow ED^2=EC.EB.\)(đpcm).

c) Tứ giác OHDE nội tiếp đường tròn (cmt) => ^OEH=^ODH.

Lại có: CI//OE => ^OEH=^ICH => ^ICH=^ODH hay ^ICH=^IDH

=> Tứ giác HICD nội tiếp đường tròn => ^HID=^HCD=^BCD

Do tứ giác ABDC nội tiếp (O) => ^BCD=^BAD.

Do đó ^HID=^BAD. Mà 2 góc bên ở vị trí đồng vị => HI//AB (đpcm).

d) Gọi giao điểm của tia CI với AB là P.

Ta thấy: Đường tròn (O) có dây cung BC và OH vuông góc BC tại H => H là trung điểm BC.

Xét \(\Delta\)BPC: H là trung điểm BC; HI//BP (HI//AB); I thuộc CP => I là trung điểm CP => IC=IP (1)

Theo hệ quả của ĐL Thales; ta có: \(\frac{IP}{DM}=\frac{AI}{AD};\frac{IC}{DN}=\frac{AD}{AI}\Rightarrow\frac{IP}{DM}=\frac{IC}{DN}\)(2)

Từ (1) và (2) => DM=DN (đpcm).

6 tháng 6 2018

k mình nha 

20 tháng 5 2018

Ai trả lời hộ điiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinhanh lênnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

20 tháng 5 2018

tôi học lớp 7 thôi

21 tháng 5 2016

4] 
tg DEC ~ tg DCB 
=> EC/BC = DC/DB 
=> EC = BC.DC/DB 
=> AC.EC = AC.BC.DC/DB = 2S(ACB).DC/DB 
Cần c/m AF.CH = AC.EC 
<=> AF.CH = 2S(ACB).DC/DB 
<=> AE.DB = 2S(ACB).DC/CH (*) 
Mà 2S(ACB)/CH = AB 
=> (*) <=> AE.DB = AB.DC = AB.DA 
Mà AE.DB = 2S(ADB); AB.DA = 2S(ADB) 
Vậy: AF.CH = AC.EC 

5] 
Ta đi c/m KA=KD để suy ra KE là tiếp tuyến. 
AE kéo dài CH tại M 
=> AK/CM = KI/IC 
=> KD/CH = KI/IC 
=> AK/CM = KD/CH (*) 

DP cắt CH tại P; BC cắt AD tại J 
=> HP/AD = BP/BD = CP/DJ (**) 
Tam giác ACJ vuông tại C, AD=AD => DC là trung tuyến => AD=DJ 
Từ (**) => HP=PC 

Xét 2 tg vuông AMH và HBP, ta có ^AMH = ^HBP (cạnh tương ứng vuông góc) 
=> tg AMH ~ HBP 
=> MH/AH = HB/PH 
=> MH = AH.HB/PH = AH.HB/(CH/2) = 2AH.HB/CH (***) 
Do CH^2 = AH.HB => AH.HB/CH = CH 
Từ (***) => MH = 2CH => CM =CH 
Từ (*) => AK =KD 
=> KE là trung tuyến tg vuông ADE => ka=ke 
=> tg OKA = tg OKE (do OA=OE, OK chung; AK=KD) 
=> ^KEO = ^KAO = 90 
=> KE là tiếp tuyến của (O)

DE//xx'

=>góc AED=góc EAx'=góc x'AC=góc ABC

Xét ΔAED và ΔABC có

góc AED=góc ABC

góc DAE chung

=>ΔAED đồng dạng vơi ΔABC
=>AE/AB=AD/AC

=>AE*AC=AB*AD

3 tháng 6 2018

A B C D O E F Q P R K L M I H S

a) Ta có: Tứ giác ABEC nội tiếp đường tròn (O) => ^ABC=^AEC hay ^ABD=^AEC.

Xét \(\Delta\)ADB và \(\Delta\)ACE: ^ABD=^AEC; ^ADB=^ACE (=900) => \(\Delta\)ADB ~ \(\Delta\)ACE (g.g)

=> \(\frac{AB}{AE}=\frac{AD}{AC}\Rightarrow AB.AC=AD.AE\)(đpcm).

b) Gọi giao điểm của AC và BF là M.

Ta có: AF//BC => ^AFM=^CBM. Mà ^CBM=^FAM (Cùng chắn cung CF) => ^AFM=^FAM

=> \(\Delta\)AMF cân đỉnh M => AM=FM.

Lại có: ^BCM=^FAM (So le trg) => ^BCM=^CBM => \(\Delta\)BMC cân tại M => MB=MC

=> \(\Delta\)AMB=\(\Delta\)FMC (c.g.c) => ^ABM=^FCM => ^ABM+^MBC=^FCM+^CBM => ^ABC=^FCB

=> Tứ giác ABCF là hình thang cân => ^BAF=^CFA.

Dễ thấy: ^DAF=900 (Do AD vuông BC và AF//BC); ^EFA=900

=> ^BAF - ^DAF = ^CFA - ^EFA => ^BAD=^CFE hay ^BAP=^CFQ

Xét \(\Delta\)APB và \(\Delta\)FQC: AB=FC; ^BAP=^CFQ; ^ABP=^FCQ

=> \(\Delta\)APB=\(\Delta\)FQC (g.c.g) => AP=FQ (2 cạnh tương ứng)

Xét tứ giác APQF: ^PAF=^QFA (=900); AP=FQ => Tứ giác APQF là hình chữ nhật

=> ^APQ=900 => PQ vuông góc AD. Mà AD vuông BC nên PQ//BC (Q.h //, vg góc).

c) Gọi giao điểm của FE với BC là R; AD cắt (O) tại L.

Theo chứng minh ở câu a): \(AB.AC=AD.AE\)

\(\Rightarrow AB.AC-AD.AK=AD.AE-AD.AK=AD\left(AE-AK\right)=AD.KE\)(*)

Ta có tứ giác ABEC nội tiếp (O) => \(\Delta\)AKC ~ \(\Delta\)BKE (g.g)

\(\Rightarrow\frac{AK}{BK}=\frac{CK}{KE}\Rightarrow BK.CK=AK.KE\)(1)

Tương tự: \(\Delta\)ADC ~ \(\Delta\)BDL (g.g)

\(\Rightarrow\frac{AD}{BD}=\frac{CD}{DL}\Rightarrow BD.CD=AD.DL\)(2)

Nhân (1) với (2) theo vế, ta được: 

\(BD.CD.BK.CK=AD.AD.KE.AK=\left(KE.AD\right).\left(AK.DL\right)\)(3)

Dễ c/m: 2 tứ giác AFRD và AFEL là hình chữ nhật => AD=FR và AL=FE

=> AL-AD = FE-FR => DL=RE, thay vào (3) suy ra:

\(BD.CD.BK.CK=\left(KE.AD\right).\left(AK.RE\right)\)(4)

Áp dụng hệ quả ĐL Thales: \(\frac{AK}{KE}=\frac{AD}{RE}\)(Do AD//RE) \(\Rightarrow AK.RE=KE.AD\)

Thay vào (4) => \(BD.CD.BK.CK=\left(KE.AD\right).\left(KE.AD\right)=\left(KE.AD\right)^2\)

\(\Leftrightarrow\sqrt{BD.CD.BK.CK}=KE.AD\)(**)

Từ (*) và (**) => \(AB.AC-AD.AK=\sqrt{BD.CD.BK.CK}\)(đpcm).