K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2020

Hỏi đáp Toán

a) \(\widehat{ACF}=90^0\) ( chắn nửa đường tròn ) => FC vuông góc với AC

Lại có BH vuông góc với AC => FC // BH (1)

Chứng minh tương tự: BF // CH (2)

Từ (1) và (2) => BFCH là hình bình hành.

b) Vì BFCH là hình bình hành nên 2 đường chéo HF và BC giao nhau tại trung điểm mỗi đường.

Mà M là trung điểm của BC => M đồng thời là trung điểm của HF

=> H, M, F thẳng hàng ( đpcm )

c) Xét tam giác AHF có O là trung điểm của AF

Có M là trung điểm của HF => OM là đường trung điểm của tam giác AHF

=> OM = \(\frac{1}{2}\) AH ( đpcm )

9 tháng 6 2020

Đường trung bình nhaaaaa

25 tháng 5 2019

a,Chứng minh được BFCH là hình bình hành

b, Sử dụng kết quả câu a), suy ra HF đi qua M

c, Chú ý: OM là đường trung bình của ∆AHF => ĐPCM

15 tháng 10 2023

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

\(\widehat{DAB}\) chung

Do đó: ΔADB đồng dạng với ΔAEC

=>\(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)

=>\(AD\cdot AC=AB\cdot AE\)

b: Xét (O) có

ΔABF nội tiếp

AF là đường kính

Do đó: ΔABF vuông tại B

=>BF vuông góc AB

mà CH vuông góc AB

nên BF//CH

Xét (O) có

ΔACF nội tiếp

AF là đường kính

Do đó: ΔACF vuông tại C

=>AC vuông góc CF

mà AC vuông góc BH

nên BH//CF

Xét tứ giác BHCF có

BH//CF

BF//CH

Do đó: BHCF là hình bình hành

c: BHCF là hình bình hành

=>BC cắt HF tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HF

=>H,M,F thẳng hàng

24 tháng 10 2022

a: Xét (O) có

ΔABK nội tiếp

AK là đường kính

Do đó: ΔABK vuông tại B

=>BK vuông góc với AB

=>BK//CH

Xét (O) có

ΔACK nội tiếp

AK là đường kính

Do đó: ΔACK vuông tại C

=>AC vuông góc với CK

=>CK//BH

Xét tứ giác BHCK có

BH//CK

BK//CH

Do đó: BHCK là hình bình hành

b: Vì BHCK là hình bình hành

nên BC cắt HK tại trung điểm của mỗi đường

=>M là trung điểm của HK

Xét ΔKAH có

KO/KA=KM/KH

nên OM//AH và OM/AH=KO/KA=1/2

=>OM=1/2AH

11 tháng 4 2020

Bấm nhầm :)))))

a: Xét (O) có

ΔABF nội tiếp

AF là đường kính

Do đo: ΔABF vuông tại B

=>BF//CH

Xét (O) có

ΔACF nội tiếp

AF là đường kính

Do đo: ΔACF vuông tại C

=>CF//BH

mà BF//CH

nên BFCH là hình bình hành

b: Vì BFCH là hình bình hành

nên BC cắt FH tại trung điểm của mỗi đường

=>H,M,F thẳng hàng