Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, HS tự chứng minh
b, HS tự chứng minh
c, DAEH vuông nên ta có: KE = KA = 1 2 AH
=> DAKE cân tại K
=> K A E ^ = K E A ^
DEOC cân ở O => O C E ^ = O E C ^
H là trực tâm => AH ^ BC
Có A E K ^ + O E C ^ = H A C ^ + A C O ^ = 90 0
(K tâm ngoại tiếp) => OE ^ KE
d, HS tự làm
a: Xét (O) có
ΔBNC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBNC vuông tại N
Xét (O) có
ΔBMC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBMC vuông tại M
Xét ΔABC có
BN là đường cao
CM là đường cao
BN cắt CM tại H
Do đó: AH\(\perp\)BC
Xét (O) có
ΔBMC nội tiếp
BC là đường kính
Do đó: ΔBMC vuông tại M
Xét (O) có
ΔBNC nội tiếp
BC là đường kính
Do đo: ΔBNC vuông tại N
Xet ΔABC có
BN,CM là các đường cao
BN cắt CM tại H
Do đó; H là trực tâm
=>AH vuông góc với BC
Lời giải:
$\widehat{BAC}=\frac{1}{2}\widehat{BOC}(1)$
$\widehat{BAC}=\frac{1}{2}(\text{sđc(BC)}-\text{sđc(MN nhỏ)})=\frac{1}{2}(\text{sđc(MB) nhỏ}+\text{sđc(NC) nhỏ})=\frac{1}{2}(\widehat{MIB}+\widehat{NIC})(2)$
Từ $(1);(2)\Rightarrow \widehat{MIB}+\widehat{NIC}=90^0$
$\Rightarrow \widehat{MIN}=90^0=\widehat{OIC}$
$\Rightarrow \widehat{MIO}=\widehat{NIC}$
$\Rightarrow \text{cung(MO)}=\text{cung(NC)}$
$\Rightarrow ONCM$ là hình thang cân (hệ quả quen thuộc)
$\Rightarrow MN=OC=R$
Ta có đpcm.
a) Xét (O) có
ΔDBC nội tiếp đường tròn(D,B,C∈(O))
BC là đường kính(gt)
Do đó: ΔDBC vuông tại D(Định lí)
⇒CD⊥BD tại D
⇒CD⊥AB tại D
⇒HD⊥AD tại D
Xét ΔADH có HD⊥AD tại D(cmt)
nên ΔADH vuông tại D(Định nghĩa tam giác vuông)
Ta có: ΔADH vuông tại D(cmt)
mà DI là đường trung tuyến ứng với cạnh huyền AH(I là trung điểm của AH)
nên \(DI=\dfrac{AH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(1)
Xét (O) có
ΔBEC nội tiếp đường tròn(B,E,C∈(O))
BC là đường kính(gt)
Do đó: ΔBEC vuông tại E(Định lí)
⇒BE⊥CE tại E
⇒BE⊥AC tại E
⇒HE⊥AE tại E
Xét ΔAEH có AE⊥EH tại E(cmt)
nên ΔAEH vuông tại E(Định nghĩa tam giác vuông)
Ta có: ΔAEH vuông tại E(cmt)
mà EI là đường trung tuyến ứng với cạnh huyền AH(I là trung điểm của AH)
nên \(EI=\dfrac{AH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)
Từ (1) và (2) suy ra ID=IE
hay I nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(3)
Ta có: OD=OE(=R)
nên O nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(4)
Từ (3) và (4) suy ra OI là đường trung trực của DE
hay OI⊥DE(đpcm)